Answer:
a) 50μC
b) 37.45 m/s
Explanation:
a) If the spheres are connected the charge in both spheres tends to be equal. This because is the situation of minimum energy.
Thus, you have:

Hence, each sphere has a charge of 50μC.
b) You use the fact that the total work done by the electric force is equal to the change in the kinetic energy of the sphere. Then, you use the following equations:
![\Delta W=\Delta K\\\\\int_{0.4}^\infty Fdr=\frac{1}{2}m[v^2-v_o^2]\\\\F=k\frac{Q^2}{r^2}\\\\v_o=0m/s\\\\m=0.08kg\\\\kQ^2\int_{0.4}^{\infty} \frac{dr}{r^2}=kQ^2[-\frac{1}{r}]_{0.4}^{\infty}=\frac{kQ^2}{0.4m}=\frac{(8.98*10^9Nm^2/C^2)(50*10^{-6}C)^2}{0.4m}\\\\kQ^2\int_{0.4}^{\infty} \frac{dr}{r^2}=56.125J](https://tex.z-dn.net/?f=%5CDelta%20W%3D%5CDelta%20K%5C%5C%5C%5C%5Cint_%7B0.4%7D%5E%5Cinfty%20Fdr%3D%5Cfrac%7B1%7D%7B2%7Dm%5Bv%5E2-v_o%5E2%5D%5C%5C%5C%5CF%3Dk%5Cfrac%7BQ%5E2%7D%7Br%5E2%7D%5C%5C%5C%5Cv_o%3D0m%2Fs%5C%5C%5C%5Cm%3D0.08kg%5C%5C%5C%5CkQ%5E2%5Cint_%7B0.4%7D%5E%7B%5Cinfty%7D%20%5Cfrac%7Bdr%7D%7Br%5E2%7D%3DkQ%5E2%5B-%5Cfrac%7B1%7D%7Br%7D%5D_%7B0.4%7D%5E%7B%5Cinfty%7D%3D%5Cfrac%7BkQ%5E2%7D%7B0.4m%7D%3D%5Cfrac%7B%288.98%2A10%5E9Nm%5E2%2FC%5E2%29%2850%2A10%5E%7B-6%7DC%29%5E2%7D%7B0.4m%7D%5C%5C%5C%5CkQ%5E2%5Cint_%7B0.4%7D%5E%7B%5Cinfty%7D%20%5Cfrac%7Bdr%7D%7Br%5E2%7D%3D56.125J)
where you have used the Coulomb constant = 8.98*10^9 Nm^2/C^2
Next, you equal the total work to the change in K:

hence, the speed of the spheres is 37.45 m/s
Answer:
92 protons
Explanation:
The mass number is
238
, so the nucleus has <u>238 particles</u> in total, including <u>146 neutrons</u>. So to calculate the number of neutrons we have to subtract: 238 − 146 = 92
Answer:
The First is an example of acceleration, the second is an example of velocity
Answer:
I thought "Born Without a Heart" was pretty good.
Hi
Explanation: