Answer:
Explanation:
component of force along the ramp
= 370 cos θ where θ is the slope of the ramp with respect to ground.
sinθ = 1.4 / 5
θ = 16 degree
370 cos16
= 355.67 N
Work done
= component of force along the ramp x length of the ramp
= 355.67 x 5
= 1778.35 J
F = G m1*m2 / r^2 => [G] = [F]*[r]^2 /([m1]*[m2]) = N * m^2 / kg^2
That is one answer.
Also, you can use the fact that N = kg*m/s^2
[G] = kg * m / s^2 * m^2 / kg^2 = m^3 /(s^2 * kg)
Answer:
B) What is the enthalpy change, ∆H, for this reaction? Show your work to receive full credit (5 points) The enthalpy change is 150. To find it we must subtract energy of products (200) & the energy of reactants (50) so 200 – 50 equals 150.
Explanation:
B) What is the enthalpy change, ∆H, for this reaction? Show your work to receive full credit (5 points) The enthalpy change is 150. To find it we must subtract energy of products (200) & the energy of reactants (50) so 200 – 50 equals 150.
12.8 rad
Explanation:
The angular displacement
through which the wheel turned can be determined from the equation below:
(1)
where



Using these values, we can solve for
from Eqn(1) as follows:

or



Answer:
Explained below
Explanation:
A) Newton's first law of motion states that an object will remain at rest or continue in its current state of motion except it is acted upon by another force.
Now using this law, when you jump off the ground, the earth will move a tiny bit and accelerate due to the force applied by the jumping.
B) Newton's 2nd law states that the acceleration of a system is directly proportional to the net external force acting on that system, is in the same direction with it and also inversely proportional to the mass.
In this case, when one jumps, an external force is exerted on the earth and we are told it is directly proportional to the acceleration of the system which in this case it's the earth, then it means that there is some motion by the earth even though you didn't see it move.
C) Newton's third law of motion states that to every action, there is an equal and opposite reaction.
In this case the motion of the jumper will lead to an equal and opposite reaction of the earth.