Answer:
1. B. Increase
2. A. Decrease
Explanation:
To understand this issue, we need to put some values and using the ohm's law we can corroborate the two situations.
Ohm's law:
![V = I*R\\where:\\I = current[A] ampers\\R = resistance [ohms]\\V = voltage [volts]\\](https://tex.z-dn.net/?f=V%20%3D%20I%2AR%5C%5Cwhere%3A%5C%5CI%20%3D%20current%5BA%5D%20ampers%5C%5CR%20%3D%20resistance%20%5Bohms%5D%5C%5CV%20%3D%20voltage%20%5Bvolts%5D%5C%5C)
Now for the voltage we will use V = 110 [V], for resistance R = 10 [ohms]
Replacing the values we have:
![I = \frac{V}{R} \\\\I = \frac{110}{10}\\I= 11 [amp]](https://tex.z-dn.net/?f=I%20%3D%20%5Cfrac%7BV%7D%7BR%7D%20%5C%5C%5C%5CI%20%3D%20%5Cfrac%7B110%7D%7B10%7D%5C%5CI%3D%2011%20%5Bamp%5D)
Now let's double the voltage 220 [V]:
Therefore the current will be increased.
Let's do the same for the resistance if originally we have R = 10 [ohms]
![I = \frac{V}{R}\\I = \frac{110}{10} \\I = 11 [amp]\\](https://tex.z-dn.net/?f=I%20%3D%20%5Cfrac%7BV%7D%7BR%7D%5C%5CI%20%3D%20%5Cfrac%7B110%7D%7B10%7D%20%5C%5CI%20%3D%2011%20%5Bamp%5D%5C%5C)
Now let's double the resistance 20 [ohms]:
![I=\frac{110}{20}\\I = 5.5 [amp]](https://tex.z-dn.net/?f=I%3D%5Cfrac%7B110%7D%7B20%7D%5C%5CI%20%3D%205.5%20%5Bamp%5D)
Therefore the current will be decreased.
Due to conservation of energy, half way the potential energy will be 1.5J so the remaining 1.5J is kinetic energy.
(mu s) is the coefficient of kinetic friction, <span> (mu k) is a normal force,</span>
Answer:
0 m/s²
Explanation:
Acceleration is the change in velocity over change in time. If the velocity is constant, then the acceleration is 0.