Answer:
Distance from the airport = 894.43 km
Step-by-step explanation:
Displacement and Velocity
The velocity of an object assumed as constant in time can be computed as

Where
is the displacement. Both the velocity and displacement are vectors. The displacement can be computed from the above relation as

The plane goes at 400 Km/h on a course of 120° for 2 hours. We can compute the components of the velocity as


The displacement of the plane in 2 hours is


Now the plane keeps the same speed but now its course is 210° for 1 hour. The components of the velocity are


The displacement in 1 hour is


The total displacement is the vector sum of both



The distance from the airport is the module of the displacement:


Answer:
D. He forgot to subtract the area of the base from the total surface area of the cube.
Step-by-step explanation:
He is only spray washing the *exterior* of the building; the base is not exposed so it will not be spray washed, which means Richard can use less water.
Hope this helps. :)
Answer:
The number of deserters is 34.
Step-by-step explanation:
We have to calculate the number of desertors in a group of 1500 soldiers.
The sergeant divides in groups of different numbers and count the lefts over.
If he divide in groups of 5, he has on left over. The amount of soldiers grouped has to end in 5 or 0, so the total amount of soldiers has to end in 1 or 6.
If he divide in groups of 7, there are three left over. If we take 3, the number of soldiers gruoped in 7 has to end in 8 or 3. The only numbers bigger than 1400 that end in 8 or 3 and have 7 as common divider are 1428 and 1463.
If we add the 3 soldiers left over, we have 1431 and 1466 as the only possible amount of soldiers applying to the two conditions stated until now.
If he divide in groups of 11, there are three left over. We can test with the 2 numbers we stay:

As only 1466 gives a possible result (no decimals), this is the amount of soldiers left.
The deserters are 34:

The answer is A) 7x103 is 3.5 times larger than 2x103
A = lw + lw
A = (2)(11) + (2)(3)
A = 22 + 6
A = 28 yd²