Mass and distance are the two factors
<span>let the fsh jump with initial velocity (u) in direction (angle p) with horizontal
it can cross and reach top of trajectory if its top height h = 1.5m
and horizontal distance d = (1/2) Range
--------------------------------------...
let t be top height time
at top height, vertical component of its velocity =0
vy = 0 = u sin p - gt
t = u sin p/g
h = [u sin p]*t - 0.5 g[t[^2
1.5 = u^2 sin^2 p/g - u^2 sin^2 p/2g
u^2 sin^2 p/2g = 1.5
u^2 sin^2 p = 1.5*2*9.8 = 29.4
u sin p = 5.42 m/s >>>>>>>>>>>>>>> V-component
=====================
t = HALF the time of flight
d = (1/2) Range (R) = (1/2) [2 u^2 sin p cos p/g]
1 = u^2 sin p cos p/g
u sin p * u cos p = 9.8
5.42 * u cos p = 9.8
u cos p = 1.81 m/s >>>>>>>>>>>>> H-component
check>>
u = sqrt[u^2 cos^2 p + u^2 sin^2 p] = 5.71 m/s
u < less than fish's potential jump speed 6.26 m/s
so it will able to cross</span>
Answer:
a. when the acceleration of the objects become negative
Answer:
The necessary separation between the two parallel plates is 0.104 mm
Explanation:
Given;
length of each side of the square plate, L = 6.5 cm = 0.065 m
charge on each plate, Q = 12.5 nC
potential difference across the plates, V = 34.8 V
Potential difference across parallel plates is given as;
![V = \frac{Qd}{L^2 \epsilon_o} \\\\d = \frac{V L^2 \epsilon_o}{Q}](https://tex.z-dn.net/?f=V%20%3D%20%5Cfrac%7BQd%7D%7BL%5E2%20%5Cepsilon_o%7D%20%5C%5C%5C%5Cd%20%3D%20%5Cfrac%7BV%20L%5E2%20%5Cepsilon_o%7D%7BQ%7D)
Where;
d is the separation or distance between the two parallel plates;
![d = \frac{VL^2 \epsilon_o}{Q} \\\\d = \frac{34.8*(0.065)^2 *8.854*10^{-12}}{12.5*10^{-9}} \\\\d = 0.000104 \ m\\\\d = 0.104 \ mm](https://tex.z-dn.net/?f=d%20%3D%20%5Cfrac%7BVL%5E2%20%5Cepsilon_o%7D%7BQ%7D%20%5C%5C%5C%5Cd%20%3D%20%20%5Cfrac%7B34.8%2A%280.065%29%5E2%20%2A8.854%2A10%5E%7B-12%7D%7D%7B12.5%2A10%5E%7B-9%7D%7D%20%5C%5C%5C%5Cd%20%3D%200.000104%20%5C%20m%5C%5C%5C%5Cd%20%3D%200.104%20%5C%20mm)
Therefore, the necessary separation between the two parallel plates is 0.104 mm