Answer:
The initial speed of the ball was 26.2 m/s
Explanation:
When the football player is in the air at his maximum height the vertical component of velocity is zero, To obtain the horizontal velocity when the player catches the ball we need to apply the linear momentum conservation theorem:

we need to obtain the time taken to go down.

We have a horizontal displacement and the time taken to stop, so:

so:

Answer: Taking into account sound is a wave, we can use the information of the displacement (generally given as a graph) to find the wavelength and frequency, then we can calculate the speed with the formula of the speed of a wave.
Explanation:
If we have the displacement graph of the sound wave, we can find its amplitude, its wavelength and period (which is the inverse of frequency).
Now, if we additionally have the frequency as data, we can use the equation of the speed of a wave:

Where:
is the speed of the sound wave
is the wavelength
is the frequency
We know, acceleration = final velocity - initial velocity / time
Here, if velocity is increasing, then,
Final velocity > initial velocity, in that case, acceleration is also increasing, as it is directly proportional to velocity
In short, Your Answer would be "Yes"
Hope this helps!