Answer: The Millers need 15 gallons of water for 6 minutes.
Lets start by finding how much water is needed for 1 min shower.
<span>
25 gallons of water is used for 10 min shower:
</span>10 mins = 25 gallons <span>
To find 1 min shower, we will divide the 25 gallons of water by 10.
</span><span>
10 mins = 25 gallons </span>← Divide by 10 on both sides<span>
÷ 10 ÷ 10
1 min = 2.5 gallons
Now that we know the Millers need 2.5 gallons for every 1 minute of shower, we can find 6 minutes of shower by multiplying by 6.
1 min = 2.5 gallons</span> ← Multiply 6 on both sides<span>
x6 x6
6 min = 15 gallons
-----------------------------------------------</span>---------------------------------------<span>
Answer: The Millers need 15 gallons of water for 6 minutes.
</span>--------------------------------------------------------------------------------------<span>
</span>
Answer:
If k = −1 then the system has no solutions.
If k = 2 then the system has infinitely many solutions.
The system cannot have unique solution.
Step-by-step explanation:
We have the following system of equations

The augmented matrix is
![\left[\begin{array}{cccc}1&-2&3&2\\1&1&1&k\\2&-1&4&k^2\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%26-2%263%262%5C%5C1%261%261%26k%5C%5C2%26-1%264%26k%5E2%5Cend%7Barray%7D%5Cright%5D)
The reduction of this matrix to row-echelon form is outlined below.

![\left[\begin{array}{cccc}1&-2&3&2\\0&3&-2&k-2\\2&-1&4&k^2\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%26-2%263%262%5C%5C0%263%26-2%26k-2%5C%5C2%26-1%264%26k%5E2%5Cend%7Barray%7D%5Cright%5D)

![\left[\begin{array}{cccc}1&-2&3&2\\0&3&-2&k-2\\0&3&-2&k^2-4\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%26-2%263%262%5C%5C0%263%26-2%26k-2%5C%5C0%263%26-2%26k%5E2-4%5Cend%7Barray%7D%5Cright%5D)

![\left[\begin{array}{cccc}1&-2&3&2\\0&3&-2&k-2\\0&0&0&k^2-k-2\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%26-2%263%262%5C%5C0%263%26-2%26k-2%5C%5C0%260%260%26k%5E2-k-2%5Cend%7Barray%7D%5Cright%5D)
The last row determines, if there are solutions or not. To be consistent, we must have k such that


Case k = −1:
![\left[\begin{array}{ccc|c}1&-2&3&2\\0&3&-2&-1-2\\0&0&0&(-1)^2-(-1)-2\end{array}\right] \rightarrow \left[\begin{array}{ccc|c}1&-2&3&2\\0&3&-2&-3\\0&0&0&-2\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Cc%7D1%26-2%263%262%5C%5C0%263%26-2%26-1-2%5C%5C0%260%260%26%28-1%29%5E2-%28-1%29-2%5Cend%7Barray%7D%5Cright%5D%20%5Crightarrow%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Cc%7D1%26-2%263%262%5C%5C0%263%26-2%26-3%5C%5C0%260%260%26-2%5Cend%7Barray%7D%5Cright%5D)
If k = −1 then the last equation becomes 0 = −2 which is impossible.Therefore, the system has no solutions.
Case k = 2:
![\left[\begin{array}{ccc|c}1&-2&3&2\\0&3&-2&2-2\\0&0&0&(2)^2-(2)-2\end{array}\right] \rightarrow \left[\begin{array}{ccc|c}1&-2&3&2\\0&3&-2&0\\0&0&0&0\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Cc%7D1%26-2%263%262%5C%5C0%263%26-2%262-2%5C%5C0%260%260%26%282%29%5E2-%282%29-2%5Cend%7Barray%7D%5Cright%5D%20%5Crightarrow%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Cc%7D1%26-2%263%262%5C%5C0%263%26-2%260%5C%5C0%260%260%260%5Cend%7Barray%7D%5Cright%5D)
This gives the infinite many solution.
Answer:
<h2>A. <em><u>2</u></em><em><u>1</u></em><em><u>4</u></em><em><u>,</u></em><em><u>0</u></em><em><u>0</u></em><em><u>0</u></em></h2>
Step-by-step explanation:
<h3>#CarryOnLearning</h3>

Answer:
(
−
6
,
−
30
)
Step-by-step explanation:
Rewrite in vertex form and use this form to find the vertex (
h
,
k
)
.