Answer:
different sizes of the parachute
Explanation:
this is what is being changed throughout the experiment
B- Carbon dioxide, every other option listed is composed of more than one thing.
Answer:
Explanation:
To break apart a molecule of H2So4 is much higher than HCl although HCl is an ionic bond it is only bonded to one hydrogen. While H2So4 is bonded to two of them, aswell as its structure being much more complex. The energy to break Ba(h)2 is equal in both.
I have provided the full reaction scheme for the synthesis of 4-methyl-3-hexanone from the reaction of acetylene and bromoethane. Acetylene is initially reacted with NaNH₂ which is a strong base that deprotonates the C-H of the acetylene which creates a carbon nucleophile which will then attack the electrophilic carbon containing the bromo in bromoethane. This is a simple sn2 substitution. Essentially an ethyl group is added to each side of the triple bond in acetylene.
With the 3-hexyne in hand, the triple bond is reduced using Lindlar's catalyst which will hydrogenate only to the alkene and stop. The 3-hexene is then reacted with a peroxycarboxylic acid which is used to epoxidize the alkene, to give the epoxide.
The epoxide is reacted with the grignard reagent which treats the methyl as a strong nucleophile. The methyl adds to one carbon of the epoxide and opens the ring. The acid is added at the end to protonate the alcohol.
Finally, the alcohol is oxidized with chromic acid which will oxidize a secondary alcohol to the ketone. The final product is 4-methyl-3-hexanone.