1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
RSB [31]
3 years ago
10

A square sandbox has sides that are 10 feet long. What is the sandbox's area?

Mathematics
1 answer:
Ainat [17]3 years ago
4 0

Answer:

0.0929

Step-by-step explanation:

thats the answer

You might be interested in
4sin²<img src="https://tex.z-dn.net/?f=%5Cfrac%7Bx%7D%7B2%7D" id="TexFormula1" title="\frac{x}{2}" alt="\frac{x}{2}" align="absm
raketka [301]

Answer:

\displaystyle x=\left \{\frac{2\pi}{3}+2\pi k,\frac{4\pi}{3}+2\pi k, \frac{8\pi}{3}+2\pi k, \frac{10\pi}{3}+2\pi k\right \}k\in \mathbb{Z}

Step-by-step explanation:

Hi there!

We want to solve for x in:

4\sin^2(\frac{x}{2})=3

Since x is in the argument of \sin^2, let's first isolate \sin^2 by dividing both sides by 4:

\displaystyle \sin^2\left(\frac{x}{2}\right)=\frac{3}{4}

Next, recall that \sin^2x is just shorthand notation for (\sin x)^2. Therefore, take the square root of both sides:

\displaystyle \sqrt{\sin^2\left(\frac{x}{2}\right)}=\sqrt{\frac{3}{4}},\\\sin\left(\frac{x}{2}\right)=\pm \sqrt{\frac{3}{4}}

Simplify using \displaystyle \sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}:

\displaystyle \sin\left(\frac{x}{2}\right)=\pm \sqrt{\frac{3}{4}},\\\sin\left(\frac{x}{2}\right)=\pm \frac{\sqrt{3}}{\sqrt{4}}=\pm \frac{\sqrt{3}}{2}

Let \phi = \frac{x}{2}.

<h3><u>Case 1 (positive root):</u></h3>

\displaystyle \sin(\phi)=\frac{\sqrt{3}}{2},\\\phi = \frac{\pi}{3}+2\pi k, k\in \mathbb{Z}, \\\\\phi =\frac{2\pi}{3}+2\pi k, k\in \mathbb{Z}

Therefore, we have:

\displaystyle \frac{x}{2}=\phi = \frac{\pi}{3}+2\pi k, k\in \mathbb{Z}, \\\\\frac{x}{2}=\phi =\frac{2\pi}{3}+2\pi k, k\in \mathbb{Z},\\\\\begin{cases}x=\boxed{\frac{2\pi}{3}+2\pi k, k\in \mathbb{Z}},\\x=\boxed{\frac{4\pi}{3}+2\pi k , k \in \mathbb{Z}}\end{cases}

<h3><u>Case 2 (negative root):</u></h3>

\displaystyle \sin(\phi)=-\frac{\sqrt{3}}{2},\\\phi = \frac{4\pi}{3}+2\pi k, k\in \mathbb{Z}, \\\\\phi =\frac{5\pi}{3}+2\pi k, k\in \mathbb{Z},\\\begin{cases}x=\boxed{\frac{8\pi}{3}+2\pi k, k\in \mathbb{Z}},\\x=\boxed{\frac{10\pi}{3}+2\pi k , k \in \mathbb{Z}}\end{cases}

8 0
3 years ago
What is the answer to<br> -12 + 7 = __
bixtya [17]

Answer:

-5

Step-by-step explanation:

an easy way to do it is to flip it so its 7-12 or you can do 12-7 and you get 5 then just add a - sign but thats my way and its weird lol

6 0
4 years ago
Read 2 more answers
Help me please help me please
Olegator [25]
2=10
3 =15
7=35
1=5
Constant of 1 is 5
3 0
3 years ago
Read 2 more answers
Find a polynomial f(x) of degree 4 that has the following zeros.
34kurt

Answer:

The answer to your question is     (x₁ - 4)(x₂ - 9)(x₃)(x₄ +4)

Step-by-step explanation:

Data

zeros of a polynomial  = 4, 9, 0, -1

Process

1.- Equal each root to zero

   x₁ = 4     x₂ = 9    x₃ = 0    x₄ = -1

  x₁ - 4 = 0    x₂ - 9 = 0     x₃ = 0    x₄ + 1 = 0

2.- Write the terms together

   (x₁ - 4)(x₂ - 9)(x₃)(x₄ +4)

3.- Expand to check the answer

   (x - 4)(x - 9) = x² -13x + 36

   (x² -13x + 36)(x) = x³ - 13x² + 36x

   (x³ - 13x² + 36x)(x + 4) = x⁴ - 13x³ + 36x² + 4x³ - 52x² + 144x

                                        = x⁴ - 9x³ - 16x² + 144

3 0
3 years ago
Can someone help me with this question please?
erma4kov [3.2K]

Answer:

the answer will be 4/3 in slope form

Step-by-step explanation:

the answer will be 4/3 in slope form

3 0
3 years ago
Other questions:
  • 4 + m = 12 whats the value of m
    9·1 answer
  • The number of bacteria after t hours is given by N(t)=250 e^0.15t a) Find the initial number of bacteria and the rate of growth
    8·1 answer
  • 2,500 centimeters are equal to how many meters
    10·1 answer
  • 22 is 40% of what number?<br> 0)
    11·1 answer
  • How do you say 876543 in word form
    10·2 answers
  • Think about a density curve that consists of two straight-line segments. The first goes from the point (0, 1) to the point (0.7,
    14·1 answer
  • Which of the following is not true when using the confidence interval method for testing a claim about μ when σ is​ unknown? Cho
    5·1 answer
  • I will give brainlest
    10·2 answers
  • Solve by factoring.<br><br> m^2+6m+5=0
    11·1 answer
  • A man is paid a basic hourly rate of $7.00 and is paid
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!