First, in order to calculate the specific heat capacity of the metal in help in identifying it, we must find the heat absorbed by the calorimeter using:
Energy = mass * specific heat capacity * change in temperature
Q = 250 * 1.035 * (11.08 - 10)
Q = 279.45 cal/g
Next, we use the same formula for the metal as the heat absorbed by the calorimeter is equal to the heal released by the metal.
-279.45 = 50 * c * (11.08 - 45) [minus sign added as energy released]
c = 0.165
The specific heat capacity of the metal is 0.165 cal/gC
Answer:
The answer to your question is: kc = 6.48
Explanation:
Data
Given Molecular weight
CaO = 44.6 g 56 g
CO₂ = 26 g 44 g
CaCO₃ = 42.3 g 100 g
Find moles
CaO 56 g ---------------- 1 mol
44.6 g -------------- x
x = (44.6 x 1) / 56 = 0.8 mol
CO₂ 44 g ----------------- 1 mol
26 g ---------------- x
x = (26 x 1 ) / 44 = 0.6 moles
CaCO₃ 100 g --------------- 1 mol
42.3g -------------- x
x = (42.3 x 1) / 100 = 0.423 moles
Concentrations
CaO = 0.8 / 6.5 = 0.12 M
CO₂ = 0.6 / 6.5 = 0.09 M
CaCO₃ = 0.423 / 6.5 = 0.07 M
Equilibrium constant = ![\frac{[products]}{[reactants]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Bproducts%5D%7D%7B%5Breactants%5D%7D)
Kc = [0.07] / [[0.12][0.09]
Kc = 0.07 / 0.0108
kc = 6.48
Hey there!
(NH₄)₂SO₄ = 14 * 2 + 1 * 8 + 32+ 16 * 4 => 132 amu
Answer:
The minimum amount of energy needed the the cell to perform various cellular,biochemical and physiological activities is known is Gibbs free energy.
Explanation:
The change in gibbs free energy of is very much important to determine whether a given reaction is spontaneous,non spontaneous or equilibrium.
1 If gibbs free energy change of a reaction is negative then the reaction is spontaneous.
2 If the free energy change is 0 then the reaction is in equilibrium stage.
3 If free energy change is positive then the reaction is non spontaneous.
Answer:
Double bonds. It says I have to write more words lol but yeah it's double bonds