Answer:
The answer to your question is 3 ml
Explanation:
Data
Dosage = 9.0 mg/ kg
Child's weight = 42.9 pounds
Suspension = 60 mg/ml
milliliters = ?
Process
1.- Convert the weight to kg
1 pound ------------------- 0.453 kg
42.9 pounds --------------- x
x = (42.9 x 0.453) / 1
x = 19.43 kg
2.- Calculate the milligrams the child needs
1 kg of weight ------------ 9 mg
19.43 kg ---------------------- x
x = (19.43 x 9) / 1
x = 174.87 mg of oxcarbazepine
3.- Calculate the milliliters needed
60 mg of suspension ------------- 1 milliliters
174.87 mg -------------- x
x = (174.87 x 1) / 60
x = 2.9 ml ≈ 3 ml
Answer:
c. 131 kPa
Explanation:
Hello!
In this case, since the relationship between volume and pressure is inversely proportional, based on the Boyle's law:

Considering that the standard pressure is 101.325 kPa, we can compute the final pressure as shown below:

Therefore, the answer is c. 131 kPa
.
Best regards!!
Answer:

Explanation:
Hello,
In this case we use the Boyle's law which allows us to understand the volume-pressure behavior as an inversely proportional relationship:

Whereas we solve for
as the required final pressure:

Best regards.
Answer:
NaCl>MgCl2> MgS>KBr
Explanation:
The smaller the cation, the higher the lattice energy of the compound
The toxic gar expelled from the reaction between gasoline and oxygen in the vehicle's engine is both Carbon dioxide and monoxide