Answer:
72
Step-by-step explanation:
The area (A) of a rhombus is calculated as
A =
× d₁ × d₂ (d₁ and d₂ are the diagonals )
The diagonals bisect each other at right angles
d₁ = 2 × 6 = 12
Use the tangent ration in the upper left right triangle and the exact value
tan60° = 
tan60° =
=
=
( multiply both sides by 6 )
opp = 6
, then
d₂ = 2 × 6
= 12
Thus
A =
× 12 × 12
= 6 × 12
= 72
Answer:
1.= 27
2.=13.3...
Step-by-step explanation:
Answer:
See the explanation
Step-by-step explanation:
We know that
f(x) = 2x⁶ + 3x⁴ - 4x³ + (1/x) - sin2x
Lets calculate the derivatives:
f'(x) = 6(2x⁵) + 4(3x³) - 3(4x²) -( 1/x²) - 2(cos2x)
f'(x) = 12x⁵ + 12x³ - 12x² - (1/x²) - 2cos2x
Similarly:
f''(x) = 60x⁴ + 36x² - 24x + (2/x³) + 4sin2x
f'''(x) = 240x³ + 72x - 24 - (6/x⁴) + 8cos2x
Rearrange:
f'''(x) - 240x³ +72x - (6/x⁴) + 8cos2x - 24
f''''(x) = 720x² + 72 + (24/x⁵) - 16sin2x
Rearrange:
f''''(x) = 720x² + (24/x⁵) - 16sin2x +72
For this case we have the following equation:

If we add 1 to both sides of the equation we have:

Dividing between 2 on both sides of the equation we have:

The graph of the solution is shown in the attached figure.
Answer:
See attached image