A
method of procedure that has characterized natural science since the
17th century, consisting in systematic observation, measurement, and
experiment, and the formulation, testing, and modification of
hypotheses
Answer:
v = 2.45 m/s
Explanation:
first we find the time taken during this motion by considering the vertical motion only and applying second equation of motion:
h = Vi t + (1/2)gt²
where,
h = height of cliff = 15 m
Vi = Initial Vertical Velocity = 0 m/s
t = time taken = ?
g = 9.8 m/s²
Therefore,
15 m = (0 m/s) t + (1/2)(9.8 m/s²)t²
t² = (15 m)/(4.9 m/s²)
t = √3.06 s²
t = 1.75 s
Now, we consider the horizontal motion. Since, we neglect air friction effects. Therefore, the horizontal motion has uniform velocity. Therefore,
s = vt
where,
s = horizontal distance covered = 4.3 m
v = original horizontal velocity = ?
Therefore,
4.3 m = v(1.75 s)
v = 4.3 m/1.75 s
<u>v = 2.45 m/s</u>
Answer:
R = 4.77 ohms
Explanation:
Four resistors are given such that,
R₁ = 2 ohms
R₂ = 3 ohms
R₃ = 5 ohms
R₄ = 10 ohms
Here, R₁ and R₂ in series. The equivalent is given by :
R₁₂ = R₁ + R₂
= 2 + 5
R₁₂ = 7 ohms
Similarly, R₃ and R₄ are in series. so,
R₃₄ = R₃ + R₄
= 10+5
R₃₄ = 15 ohms
Now, R₁₂ and R₃₄ are in parallel. So,

So, the equivalent resistance s 4.77 ohms.