Answer:
choice 2) rotation 90 CW
Step-by-step explanation:
If the position at time <em>t</em> is
<em>s(t)</em> = (1 m/s³) <em>t</em> ³
then the average velocity over <em>t</em> = 2 s and <em>t</em> = 2.001 s is
<em>v</em> (ave) = (<em>s</em> (2.001 s) - <em>s</em> (2 s)) / (2.001 s - 2 s)
<em>v</em> (ave) = ((1 m/s³) (2.001 s)³ - (1 m/s³) (2 s)³) / (2.001 s - 2 s)
<em>v</em> (ave) ≈ (8.01201 m - 8 m) / (0.001 s)
<em>v</em> (ave) ≈ 12.006 m/s
Answer:
These are the answers for question 3 only.
Step-by-step explanation:
3)
a. 3 <u>></u> -3
b. 12 <u><</u> 24
c. -12 <u>></u> -24
d. 5 <u>></u> -(-5) - (I'm not sure about this one)
e. 7.2 <u>></u> 7
f. -7.2 <u><</u> -7
g. -1.5 <u>=</u> -3/2
h. -4/5 <u>></u> -5/4
i. -3/5 <u>=</u> -6/10
j. -2/3 <u><</u> 1/3
Answer:
(A) -3 ≤ x ≤ 1
Step-by-step explanation:
The given function is presented as follows;
h(x) = x² - 1
From the given function, the coefficient of the quadratic term is positive, and therefore, the function is U shaped and has a minimum value, with the slope on the interval to the left of <em>h</em> having a negative rate of change;
The minimum value of h(x) is found as follows;
At the minimum of h(x), h'(x) = d(h(x)/dx = d(x² - 1)/dx = 2·x = 0
∴ x = 0/2 = 0 at the minimum
Therefore, the function is symmetrical about the point where x = 0
The average rate of change over an interval is given by the change in 'y' and x-values over the end-point in the interval, which is the slope of a straight line drawn between the points
The average rate of change will be negative where the y-value of the left boundary of the interval is higher than the y-value of the right boundary of the interval, such that the line formed by joining the endpoints of the interval slope downwards from left to right
The distance from the x-value of left boundary of the interval that would have a negative slope from x = 0 will be more than the distance of the x-value of the right boundary of the interval
Therefore, the interval over which <em>h</em> has a negative rate of change is -3 ≤ x ≤ 1
Answer: sometimes
Step-by-step explanation: