The function domain: x<0 or 0<x<4 or x>4 (?) I believe....
Possible procedures:
1). peanut, peanut
2). peanut, cashew
3). peanut, pecan
4). cashew, peanut
5). cashew, cashew
6). cashew, pecan
7). pecan, peanut
8). pecan, cashew
9). pecan, pecan.
Nine (9) possible procedures.
But ...
(2) and (4) produce the same final result.
(3) and (7) produce the same final result.
(6) and (8) produce the same final result.
So there are only <em><u>six (6)</u></em> possible different outcomes.
cos4x = cos2x
We know that:
cos2x = 1-2cos^2 x
==> cos4x = 1-2cos^2 (2x)
Now substitute:
==> 1-2cos^2 (2x) = cos2x
==> 2cos^2 (2x) + cos2x - 1 = 0
Now factor:
==> (2cos2x -1)(cos2x + 1) = 0
==> 2cos2x -1 = 0 ==> cos2x =1/2 ==> 2x= pi/3
==> x1= pi/6 , 7pi/6
==> x1= pi/6 + 2npi
==> x2= 7pi/6 + 2npi
==> cos2x = -1 ==> 2x= pi ==> x3 = pi/2 + 2npi.
<span>==> x= { pi/6+2npi, 7pi/6+2npi, pi/2+2npi}</span>
Answer:
XCVI in Hindu Arabic numerals. is 96 (100-10+5+1)