Suppose
is another solution. Then

Substituting these derivatives into the ODE gives


Let
, so that

Then the ODE becomes

and we can condense the left hand side as a derivative of a product,
![\dfrac{\mathrm d}{\mathrm dx}[x^5u]=0](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cmathrm%20d%7D%7B%5Cmathrm%20dx%7D%5Bx%5E5u%5D%3D0)
Integrate both sides with respect to
:
![\displaystyle\int\frac{\mathrm d}{\mathrm dx}[x^5u]\,\mathrm dx=C](https://tex.z-dn.net/?f=%5Cdisplaystyle%5Cint%5Cfrac%7B%5Cmathrm%20d%7D%7B%5Cmathrm%20dx%7D%5Bx%5E5u%5D%5C%2C%5Cmathrm%20dx%3DC)

Solve for
:

Solve for
:

So another linearly independent solution is
.
<h2>Hey there! </h2>
<h2>The Reciprocal of 159 is:</h2>


<h2>Hope it help you </h2>
Answer:
-15.41
Step-by-step explanation:
big brain?
Answer:
The table C
Step-by-step explanation:
when you multiply the x number in the table c by 0.3 you get the same answer as the one in the y column. The constant of proportionality is the value that stays constant in the ratio. Since when you multiply each number in the x column by 0.3 and you always get the number in the y column it shows that the table c is correct.
Answer:
Therefore,
![r=\sqrt[3]{\frac{3V}{4\pi }}](https://tex.z-dn.net/?f=r%3D%5Csqrt%5B3%5D%7B%5Cfrac%7B3V%7D%7B4%5Cpi%20%7D%7D)
is the required r
Step-by-step explanation:
Given:
Volume of inside of the sphere is given as

where r is the radius of the sphere
To Find:
r =?
Solution:
We have
......Given
![3\times V=4\pi r^{3} \\\\\therefore r^{3}=\frac{3V}{4\pi } \\\\\therefore r=\sqrt[3]{\frac{3V}{4\pi }} \textrm{which is the expression for r}](https://tex.z-dn.net/?f=3%5Ctimes%20V%3D4%5Cpi%20r%5E%7B3%7D%20%5C%5C%5C%5C%5Ctherefore%20r%5E%7B3%7D%3D%5Cfrac%7B3V%7D%7B4%5Cpi%20%7D%20%5C%5C%5C%5C%5Ctherefore%20r%3D%5Csqrt%5B3%5D%7B%5Cfrac%7B3V%7D%7B4%5Cpi%20%7D%7D%20%5Ctextrm%7Bwhich%20is%20the%20expression%20for%20r%7D)
Therefore,
![r=\sqrt[3]{\frac{3V}{4\pi }}](https://tex.z-dn.net/?f=r%3D%5Csqrt%5B3%5D%7B%5Cfrac%7B3V%7D%7B4%5Cpi%20%7D%7D)
is the required r