Answer:
the maximum length of specimen before deformation is found to be 235.6 mm
Explanation:
First, we need to find the stress on the cylinder.
Stress = σ = P/A
where,
P = Load = 2000 N
A = Cross-sectional area = πd²/4 = π(0.0037 m)²/4
A = 1.0752 x 10^-5 m²
σ = 2000 N/1.0752 x 10^-5 m²
σ = 186 MPa
Now, we find the strain (∈):
Elastic Modulus = Stress / Strain
E = σ / ∈
∈ = σ / E
∈ = 186 x 10^6 Pa/107 x 10^9 Pa
∈ = 1.74 x 10^-3 mm/mm
Now, we find the original length.
∈ = Elongation/Original Length
Original Length = Elongation/∈
Original Length = 0.41 mm/1.74 x 10^-3
<u>Original Length = 235.6 mm</u>
Correct answer is option E. No dimensions
As we know formula Pressure (P) is
also,
- Dimensional formula of <em>Pressure is </em>
![M^{1}L^{-1}T^{-2}](https://tex.z-dn.net/?f=M%5E%7B1%7DL%5E%7B-1%7DT%5E%7B-2%7D)
- Dimensional formula of <em>length is L </em>
- Dimensional formula of <em>mass is M</em>
- Dimensional formula of <em>velocity is </em>
![L^{1} T^{-1}](https://tex.z-dn.net/?f=L%5E%7B1%7D%20T%5E%7B-1%7D)
So, as given W=![\frac{P*L^{3} }{M*V^{2} }](https://tex.z-dn.net/?f=%5Cfrac%7BP%2AL%5E%7B3%7D%20%7D%7BM%2AV%5E%7B2%7D%20%7D)
Dimensional formula of W =![\frac{M^{1}L^{-1}T^{-2} L^{3} }{M^{1} L^{2}T^{-2} }](https://tex.z-dn.net/?f=%5Cfrac%7BM%5E%7B1%7DL%5E%7B-1%7DT%5E%7B-2%7D%20%20L%5E%7B3%7D%20%20%7D%7BM%5E%7B1%7D%20L%5E%7B2%7DT%5E%7B-2%7D%20%20%20%7D)
since all terms get cancelled
Work is dimensionless i.e no dimensions
Learn more about dimensions here brainly.com/question/20351712
#SPJ10
Answer:
LAOD = 6669.86 N
Explanation:
Given data:
width![= 25 mm = 25\times 10^{-3} m](https://tex.z-dn.net/?f=%20%3D%2025%20mm%20%3D%2025%5Ctimes%2010%5E%7B-3%7D%20m)
thickness ![= 6.5 mm = 6.5\times 10^{-3} m](https://tex.z-dn.net/?f=%3D%206.5%20mm%20%3D%206.5%5Ctimes%2010%5E%7B-3%7D%20m)
crack length 2c = 0.5 mm at centre of specimen
![\sigma _{applied} = 1000 N/cross sectional area](https://tex.z-dn.net/?f=%5Csigma%20_%7Bapplied%7D%20%3D%20%201000%20N%2Fcross%20sectional%20area)
stress intensity factor = k will be
![\sigma_{applied} = \frac{1000}{25\times 10^{-3}\times 6.5\times 10^{-3}}](https://tex.z-dn.net/?f=%5Csigma_%7Bapplied%7D%20%3D%20%5Cfrac%7B1000%7D%7B25%5Ctimes%2010%5E%7B-3%7D%5Ctimes%206.5%5Ctimes%2010%5E%7B-3%7D%7D)
![= 6.154\times 10^{6} Pa](https://tex.z-dn.net/?f=%3D%206.154%5Ctimes%2010%5E%7B6%7D%20Pa%20)
we know that
![k =\sigma_{applied} (\sqrt{\pi C})](https://tex.z-dn.net/?f=k%20%3D%5Csigma_%7Bapplied%7D%20%28%5Csqrt%7B%5Cpi%20C%7D%29)
[c =0.5/2 = 2.5*10^{-4}]
K = 0.1724 Mpa m^{1/2} for 1000 load
if
then load will be
![Kc = \sigma _{frac}(\sqrt{\pi C})](https://tex.z-dn.net/?f=Kc%20%3D%20%5Csigma%20_%7Bfrac%7D%28%5Csqrt%7B%5Cpi%20C%7D%29)
![\sigma _{frac} = 41.04 MPa](https://tex.z-dn.net/?f=%5Csigma%20_%7Bfrac%7D%20%3D%2041.04%20MPa)
![load = \sigma _{frac}\times Area](https://tex.z-dn.net/?f=load%20%3D%20%5Csigma%20_%7Bfrac%7D%5Ctimes%20Area)
![load = 41.04 \times 10^6 \times 25\times 10^{-3}\times 6.5\times 10^{-3} N](https://tex.z-dn.net/?f=load%20%3D%2041.04%20%5Ctimes%2010%5E6%20%5Ctimes%2025%5Ctimes%2010%5E%7B-3%7D%5Ctimes%206.5%5Ctimes%2010%5E%7B-3%7D%20N)
LAOD = 6669.86 N
Answer:
a) What is the surface temperature, in °C, after 400 s?
T (0,400 sec) = 800°C
b) Yes, the surface temperature is greater than the ignition temperature of oak (400°C) after 400 s
c) What is the temperature, in °C, 1 mm from the surface after 400 s?
T (1 mm, 400 sec) = 798.35°C
Explanation:
oak initial Temperature = 25°C = 298 K
oak exposed to gas of temp = 800°C = 1073 K
h = 20 W/m².K
From the book, Oak properties are e=545kg/m³ k=0.19w/m.k Cp=2385J/kg.k
Assume: Volume = 1 m³, and from energy balance the heat transfer is an unsteady state.
From energy balance: ![\frac{T - T_{\infty}}{T_i - T_{\infty}} = Exp (\frac{-hA}{evCp})t](https://tex.z-dn.net/?f=%5Cfrac%7BT%20-%20T_%7B%5Cinfty%7D%7D%7BT_i%20-%20T_%7B%5Cinfty%7D%7D%20%3D%20Exp%20%28%5Cfrac%7B-hA%7D%7BevCp%7D%29t)
Initial temperature wall = ![T_i](https://tex.z-dn.net/?f=T_i)
Surface temperature = T
Gas exposed temperature = ![T_{\infty}](https://tex.z-dn.net/?f=T_%7B%5Cinfty%7D)
Answer:
true because BCD used 6 bits to represent a symbol .
Explanation:
mark me brainlist