1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ratelena [41]
3 years ago
10

which one of the following appliance parts gets the hardest services? A. Heating elementwhich one of the following appliance par

ts gets the hardest services? A. Heating element
Engineering
2 answers:
makvit [3.9K]3 years ago
8 0
The following appliance parts gets the hardest services is a line cord.
The answer is D.
(U didn’t write the right.)
padilas [110]3 years ago
8 0
The answer is D, hope this helps, good luck
You might be interested in
The product of two factors is 4,500. If one of the factors is 90, which is the other factor?
natulia [17]
The other factor is 50
Hope this help <3
Help me and mark my answer as brainliest plz plz
8 0
2 years ago
Suppose you have a 9.00 V battery, a 2.00 μF capacitor, and a 7.40 μF capacitor. (a) Find the charge and energy stored if the ca
Andru [333]

Answer:

Q=1.575*10^-6*9=1.42*10^-5C\\\\U_{c} =\frac{1}{2}*9^{2} *1.575*10^-6=6.38*10^-5J

Q=9.4*10^-6*9=8.46*10^-5C\\\\U_{c} =\frac{1}{2}*9^{2} *9.4*10^-6=3.81*10^-4J

Explanation:

<u>a)</u>

<u>Identify the unknown:  </u>

The charge and energy stored if the capacitors are connected in series  

<u>List the Knowns: </u>

Capacitance of the first capacitor: C_{1}= 2цF = 2 x 10-6 F

Capacitance of the second capacitor C_{2}= 7.4цF  = 7.4 x 10-6 F

Voltage of battery: V = 9 V  

<u>Set Up the Problem:   </u>

Capacitance of a series combination:  

\frac{1}{C_{s} } =\frac{1}{C_{1} } +\frac{1}{C_{2} } +\frac{1}{C_{3} }+............

\frac{1}{C_{s} } =\frac{1}{2} +\frac{1}{ 7.4} \\C_{s} =\frac{2*7.4}{2+7.4}=1.575 *10^-6 F\\

Capacitance of a series combination is given by:

C_{s}=\frac{Q}{V}

Then the charge stored in the series combination is:  

Q=C_{s} V

Energy stored in the series combination is:  

U_{c}=\frac{1}{2}  V^{2} C_{s}

<u>Solve the Problem:  </u>

Q=1.575*10^-6*9=1.42*10^-5C\\\\U_{c} =\frac{1}{2}*9^{2} *1.575*10^-6=6.38*10^-5J

<u>b)</u>

<u>Identify the unknown:  </u>

The charge and energy stored if the capacitors are connected in parallel  

<u>Set Up the Problem:  </u>

Capacitance of a parallel combination:

C_{p} =C_{1} +C_{2} +C_{3}

C_{p} =2+7.4=9.4*10^-6F

Capacitance of a parallel combination is given by

C_{p} =\frac{Q}{V}

Then the charge stored in the parallel combination is

Q=C_{p} V

Energy stored in the parallel combination is:  

U_{c}=\frac{1}{2} V^2C_{p}

<u>Solve the Problem: </u><em>  </em>

Q=9.4*10^-6*9=8.46*10^-5C\\\\U_{c} =\frac{1}{2}*9^{2} *9.4*10^-6=3.81*10^-4J

5 0
3 years ago
Read 2 more answers
The stagnation chamber of a wind tunnel is connected to a high-pressure airbottle farm which is outside the laboratory building.
Natasha2012 [34]

This question is not complete, the complete question is;

The stagnation chamber of a wind tunnel is connected to a high-pressure air bottle farm which is outside the laboratory building. The two are connected by a long pipe of 4-in inside diameter. If the static pressure ratio between the bottle farm and the stagnation chamber is 10, and the bottle-farm static pressure is 100 atm, how long can the pipe be without choking? Assume adiabatic, subsonic, one-dimensional flow with a friction coefficient of 0.005

Answer:

the length of the pipe is 11583 in or 965.25 ft

Explanation:

Given the data in the question;

Static pressure ratio; p1/p2 = 10

friction coefficient f = 0.005

diameter of pipe, D =4 inch

first we obtain the value from FANN0 FLOW TABLE for pressure ratio of ( p1/p2 = 10 )so

4fL_{max} / D = 57.915

we substitute

(4×0.005×L_{max}) / 4  = 57.915

0.005L_{max} = 57.915

L_{max} = 57.915 / 0.005

L_{max}  = 11583 in

Therefore, the length of the pipe is 11583 in or 965.25 ft

6 0
3 years ago
A tank with a volume of 8 m3 containing 4 m3 of 20% (by volume) NaOH solution is to be purged by adding pure water at a rate of
lawyer [7]

Answer:

The time necessary to purge 95% of the NaOH is 0.38 h

Explanation:

Given:

vfpure water(i) = 3 m³/h

vNaOH = 4 m³

xNaOH = 0.2

vfpure water(f) = 2 m³/h

pwater = 1000 kg/m³

pNaOH = 1220 kg/m³

The mass flow rate of the water is = 3 * 1000 = 3000 kg/h

The mass of NaOH in the solution is = 0.2 * 4 * 1220 = 976 kg

When the 95% of the NaOH is purged, thus the NaOH in outlet is = 0.95 * 976 = 927.2 kg

The volume of NaOH in outlet after time is = 927.2/1220 = 0.76 m³

The time required to purge the 95% of the NaOH is = 0.76/2 = 0.38 h

4 0
3 years ago
Convert mechanical energy into electric energy. What can he use?
Nina [5.8K]

Answer:

<h2>Generator </h2>

Explanation:

A generator converts mechanical energy into electrical energy

7 0
3 years ago
Other questions:
  • Alberto's mom is taking a splinter out of his hand with a pair of tweezers. The tweezers are 3 inches long. She is applying .25
    12·2 answers
  • WILL BRAINLIEST IF CORRECT!!!!!<br><br> Some one help ASAP.
    8·1 answer
  • Consider a voltage v = Vdc + vac where Vdc = a constant and the average value of vac = 0. Apply the integral definition of RMS t
    7·1 answer
  • If the resistance reading on a DMM'S meter face is to 22.5 ohms in the range selector switch is set to R X 100 range, what is th
    5·1 answer
  • A banked highway is designed for traffic moving at v = 88 km/h. The radius of the curve r = 314 m. show answer No Attempt 50% Pa
    5·2 answers
  • One cubic meter of nitrogen at 40°C and 340kPa is compressed isoentropically to 0.2m^3. Calculate the final pressure when the ni
    9·1 answer
  • If the outside diameter of a pipe is 2 m, the length of a piece of insulation wrapped around it would be a)- 628 cm b)- 12.56 m.
    15·1 answer
  • The radial component of acceleration of a particle moving in a circular path is always:________ a. negative. b. directed towards
    9·1 answer
  • I really need a good grade please help
    13·1 answer
  • What is the primary difference between the process of lost-wax casting as practiced in ancient times and that same process today
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!