1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
navik [9.2K]
4 years ago
10

The engine of a 2000kg car has a power rating of 75kW. How long would it take (seconds) to accelerate from rest to 100 km/hr at

full power on level road. Neglect drag and friction.
Engineering
1 answer:
Delvig [45]4 years ago
4 0

Answer: 10.29 sec.

Explanation:

Neglecting drag and friction, and at road level , the energy developed during the time the car is accelerating, is equal to the change in kinetic energy.

If the car starts from rest, this means the following:

ΔK = 1/2 m*vf ²

As Power (by definition) is equal to Energy/Time= 75000 W= 75000 N.m/seg, in order to get time in seconds, we need to convert 100 km/h to m/sec first:

100 (Km/h)*( 1000m /1 Km)*(3600 sec/1 h)= 27,78 m/sec

Now, we calculate the change in energy:

ΔK= 1/2*2000 Kg. (27,78)² m²/sec²= 771,728 J

<h2>If P= ΔK/Δt, </h2><h2>Δt= ΔK/P= 771,728 J / 75,000 J/sec= 10.29 sec.</h2>
You might be interested in
Degreasers can be broken down into two main categories what are they
kvv77 [185]

Answer:

water based and solvent based

Explanation:

i need 20 characters to give you this answer, but I'm guessing water displaces grease and solvents chemically react with the grease like a detergent

5 0
4 years ago
A rigid tank contains an ideal gas at 40°C that is being stirred by a paddle wheel. The paddle wheel does 240 kJ of work on the
Sergeu [11.5K]

To solve the problem it is necessary to consider the concepts and formulas related to the change of ideal gas entropy.

By definition the entropy change would be defined as

\Delta S = C_p ln(\frac{T_2}{T_1})-Rln(\frac{P_2}{P_1})

Using the Boyle equation we have

\Delta S = C_p ln(\frac{T_2}{T_1})-Rln(\frac{v_1T_2}{v_2T_1})

Where,

C_p = Specific heat at constant pressure

T_1= Initial temperature of gas

T_2= Final temprature of gas

R = Universal gas constant

v_1= Initial specific Volume of gas

v_2= Final specific volume of gas

According to the statement, it is an isothermal process and the tank is therefore rigid

T_1 = T_2, v_2=v_1

The equation would turn out as

\Delta S = C_p ln1-ln1

<em>Therefore the entropy change of the ideal gas is 0</em>

Into the surroundings we have that

\Delta S = \frac{Q}{T}

Where,

Q = Heat Exchange

T = Temperature in the surrounding

Replacing with our values we have that

\Delta S = \frac{230kJ}{(30+273)K}

\Delta S = 0.76 kJ/K

<em>Therefore the increase of entropy into the surroundings is 0.76kJ/K</em>

8 0
3 years ago
The pressure distribution over a section of a two-dimensional wing at 4 degrees of incidence may be approximated as follows: Upp
Aliun [14]

Answer:

The lift coefficient is 0.3192 while that of the moment about the leading edge is-0.1306.

Explanation:

The Upper Surface Cp is given as

Cp_u=-0.8 *0.6 +0.1 \int\limits^1_{0.6} \, dx =-0.8*0.6+0.4*0.1

The Lower Surface Cp is given as

Cp_l=-0.4 *0.6 +0.1 \int\limits^1_{0.6} \, dx =-0.4*0.6+0.4*0.1

The difference of the Cp over the airfoil is given as

\Delta Cp=Cp_l-Cp_u\\\Delta Cp=-0.4*0.6+0.4*0.1-(-0.8*0.6-0.4*0.1)\\\Delta Cp=-0.4*0.6+0.4*0.1+0.8*0.6+0.4*0.1\\\Delta Cp=0.4*0.6+0.4*0.2\\\Delta Cp=0.32

Now the Lift Coefficient is given as

C_L=\Delta C_p cos(\alpha_i)\\C_L=0.32\times cos(4*\frac{\pi}{180})\\C_L=0.3192

Now the coefficient of moment about the leading edge is given as

C_M=-0.3*0.4*0.6-(0.6+\dfrac{0.4}{3})*0.2*0.4\\C_M=-0.1306

So the lift coefficient is 0.3192 while that of the moment about the leading edge is-0.1306.

5 0
3 years ago
Select the correct answer. Why should engineers keep themselves updated on the technological developments in their field? OA. to
Nataly_w [17]
OD is the correct answer
5 0
3 years ago
Carbon dioxide enters a compressor at 100 kPa and 300 K at a rate of 0.2 kg/sec and exits at 600 kPA and 450 K. Determine the po
NemiM [27]

Answer:

Explanation:

attached below

8 0
3 years ago
Other questions:
  • The components of an electronic system dissipating 90 W are located in a 1-m-long circular horizontal duct of 15-cm diameter. Th
    11·1 answer
  • For H2O, determine the specified property at the indicated state.
    15·1 answer
  • A hollow steel tube with an inside diameter of 100 mm must carry a tensile load of 400 kN. Determine the outside diameter of the
    12·2 answers
  • As the porosity of a refractory ceramic brick increases:
    13·1 answer
  • Which substance(s) have no fixed shape and no fixed volume?
    5·2 answers
  • What is Geography? pliz help​
    8·2 answers
  • Choose the correct word or phrase to complete the sentence to explain human intervention in a machine system.
    13·1 answer
  • A jointed arm robot can rotate on the following 6 axes?
    8·1 answer
  • You do not need to remove the lead weights inside tires before recycling them.
    11·1 answer
  • A pressure-temperature curve shows that pressure and temperature are ____ in a refrigeration system.
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!