Answer:
a. V = 109.64 × 10⁵ ft/min
b. Mw = 654519.54 kg/hr
Explanation:
Given Parameters
mass flow rate of water, Mw = 90000g/min = 6607.33 kg/s
inlet temperature of water, T1 = 84 F = 28.89 C
outlet temperature of water, T2 = 68 F = 20 C
specific heat capacity of water, c = 4.18kJ/kgK
rate of heat remover from water, Qw is given by
Qw = 6607.33[28.89 - 20] * 4.18
Qw = 245529.545kw
For air, inlet condition
DBT = 70 F hi = 43.43 kJ/kg
WBT = 60 F wi = 0.00874 kJ/kg
u1 = 0.8445 m/kg
oulet condition,
DBT = 70 F RH = 100.1
h1 = 83.504kJ/kg
Wo = 0.222kJ/kg
check the attached file for complete solution
Answer:
hello your question is incomplete attached below is the complete question
answer: There is a hydraulic jump
Explanation:
First we have to calculate the depth of flow downstream of the gate
y1 =
----------- ( 1 )
Cc ( concentration coefficient ) = 0.61 ( assumed )
Yg ( depth of gate opening ) = 0.5
hence equation 1 becomes
y1 = 0.61 * 0.5 = 0.305 m
calculate the flow per unit width q
q = Q / b ----------- ( 2 )
Q = 10 m^3 /s
b = 2 m
hence equation 2 becomes
q = 10 / 2 = 5 m^2/s
next calculate the depth before hydraulic jump y2 by using the hydraulic equation
answer : where y1 < y2 hence a hydraulic jump occurs in the lined channel
attached below is the remaining part of the solution