Answer:
(look in the the Step by step)
Step-by-step explanation:
When the diagonals of a quadrilateral are perpendicular, the area of that quadrilateral is half the product of their lengths.
.. A = (1/2)*d₁*d₂
Substituting the given information, this becomes
.. 58 in² = (1/2)*(14.5 in)*d₂
.. 2*58/14.5 in = d₂ = 8 in
The length of diagonal BD is 8 in.
Answer:
Step-by-step explanation:
Vertex form is accomplished by completing the square on the quadratic. Do this by first setting the parabola equal to 0 then moving the constant over to the other side:

Now take half the linear term, square it, and add it to both sides. Our linear term is 6. Half of 6 is 3, and 3 squared is 9:

The reason we do this is to create a perfect square binomial on the left:
(obviously the 0 results from the addition of 9 and -9). Move the 0 back over to the other side and set the quadratic back equal to y:

This gives you a vertex of (-3, 0), which is a minimum value, since the parabola opens upwards.
Answer:
The library has 1,056 crime DVDs.
Step-by-step explanatiion:
Crime : Adventure : Science
11x : 6x : 10x
6x+384=10x
384=4x
x=96
The number of crime DVDs is 11x.
We found that x=96.
So, the number of crime DVDs the library has is equal to 11*96.
11*96=1,056.
Hope this helps!
Answer:

General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Equality Properties
<u>Algebra I</u>
<u>Calculus</u>
Implicit Differentiation
The derivative of a constant is equal to 0
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Product Rule: ![\frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)](https://tex.z-dn.net/?f=%5Cfrac%7Bd%7D%7Bdx%7D%20%5Bf%28x%29g%28x%29%5D%3Df%27%28x%29g%28x%29%20%2B%20g%27%28x%29f%28x%29)
Chain Rule: ![\frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)](https://tex.z-dn.net/?f=%5Cfrac%7Bd%7D%7Bdx%7D%5Bf%28g%28x%29%29%5D%20%3Df%27%28g%28x%29%29%20%5Ccdot%20g%27%28x%29)
Quotient Rule: ![\frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}](https://tex.z-dn.net/?f=%5Cfrac%7Bd%7D%7Bdx%7D%20%5B%5Cfrac%7Bf%28x%29%7D%7Bg%28x%29%7D%20%5D%3D%5Cfrac%7Bg%28x%29f%27%28x%29-g%27%28x%29f%28x%29%7D%7Bg%5E2%28x%29%7D)
Step-by-step explanation:
<u>Step 1: Define</u>
-xy - 2y = -4
Rate of change of the tangent line at point (-1, 4)
<u>Step 2: Differentiate Pt. 1</u>
<em>Find 1st Derivative</em>
- Implicit Differentiation [Product Rule/Basic Power Rule]:

- [Algebra] Isolate <em>y'</em> terms:

- [Algebra] Factor <em>y'</em>:

- [Algebra] Isolate <em>y'</em>:

- [Algebra] Rewrite:

<u>Step 3: Find </u><em><u>y</u></em>
- Define equation:

- Factor <em>y</em>:

- Isolate <em>y</em>:

- Simplify:

<u>Step 4: Rewrite 1st Derivative</u>
- [Algebra] Substitute in <em>y</em>:

- [Algebra] Simplify:

<u>Step 5: Differentiate Pt. 2</u>
<em>Find 2nd Derivative</em>
- Differentiate [Quotient Rule/Basic Power Rule]:
![y'' = \frac{0(x+2)^2 - 8 \cdot 2(x + 2) \cdot 1}{[(x + 2)^2]^2}](https://tex.z-dn.net/?f=y%27%27%20%3D%20%5Cfrac%7B0%28x%2B2%29%5E2%20-%208%20%5Ccdot%202%28x%20%2B%202%29%20%5Ccdot%201%7D%7B%5B%28x%20%2B%202%29%5E2%5D%5E2%7D)
- [Derivative] Simplify:

<u>Step 6: Find Slope at Given Point</u>
- [Algebra] Substitute in <em>x</em>:

- [Algebra] Evaluate:

Answer:
1/6 of a pizza
Step-by-step explanation:
We need to take the amount of pizza and divide by the number of students
8/12 ÷ 4
Copy dot flip
8/12 * 1/4
8/48
Divide the top and bottom by 8
1/6
Each person will get 1/6 of a pizza
I do not know how many slices because it depends on how many slices each pizza is cut into.