You need to solve the equation for h.
<span>W= 50+2.3(h-60)
Distribute the 2.3.
W = 50 + 2.3h - 138
W = 2.3h - 88
Add 88 to both sides.
W + 88 = 2.3h
Switch sides.
2.3h = W + 88
Divide both sides by 2.3.
h = (W + 88)/2.3
</span>
The Law of Cosines features the 3 side lengths of a triangle, plus the measure of the angle opposite one of those sides.
We want angle x, which is opposite the side of length 39.
Then: a^2 = b^2 - 2ab cos C becomes 39^2 = 36^2 + 59^2 - 2(36)(59)cos x
or 1521 = 3481 + 1296 - 2(36)(59) cos x
Subtract (3481+1296) from both sides: 1521 - 4777 = -4248cos x
-3256 = -4248cos x
-3256
Then: cosx = --------------- = 0.766
-4248
Solving for x: x = arccos -0.766 = 0.698 radian, or 40 degrees (answer)
<h2>
Hello!</h2>
The answer is:
The second option,
![(\sqrt[m]{x^{a} } )^{b}=\sqrt[m]{x^{ab} }](https://tex.z-dn.net/?f=%28%5Csqrt%5Bm%5D%7Bx%5E%7Ba%7D%20%7D%20%29%5E%7Bb%7D%3D%5Csqrt%5Bm%5D%7Bx%5E%7Bab%7D%20%7D)
<h2>
Why?</h2>
Discarding each given option in order to find the correct one, we have:
<h2>
First option,</h2>
![\sqrt[m]{x}\sqrt[m]{y}=\sqrt[2m]{xy}](https://tex.z-dn.net/?f=%5Csqrt%5Bm%5D%7Bx%7D%5Csqrt%5Bm%5D%7By%7D%3D%5Csqrt%5B2m%5D%7Bxy%7D)
The statement is false, the correct form of the statement (according to the property of roots) is:
![\sqrt[m]{x}\sqrt[m]{y}=\sqrt[m]{xy}](https://tex.z-dn.net/?f=%5Csqrt%5Bm%5D%7Bx%7D%5Csqrt%5Bm%5D%7By%7D%3D%5Csqrt%5Bm%5D%7Bxy%7D)
<h2>
Second option,</h2>
![(\sqrt[m]{x^{a} } )^{b}=\sqrt[m]{x^{ab} }](https://tex.z-dn.net/?f=%28%5Csqrt%5Bm%5D%7Bx%5E%7Ba%7D%20%7D%20%29%5E%7Bb%7D%3D%5Csqrt%5Bm%5D%7Bx%5E%7Bab%7D%20%7D)
The statement is true, we can prove it by using the following properties of exponents:

![\sqrt[n]{x^{m} }=x^{\frac{m}{n} }](https://tex.z-dn.net/?f=%5Csqrt%5Bn%5D%7Bx%5E%7Bm%7D%20%7D%3Dx%5E%7B%5Cfrac%7Bm%7D%7Bn%7D%20%7D)
We are given the expression:
![(\sqrt[m]{x^{a} } )^{b}](https://tex.z-dn.net/?f=%28%5Csqrt%5Bm%5D%7Bx%5E%7Ba%7D%20%7D%20%29%5E%7Bb%7D)
So, applying the properties, we have:
![(\sqrt[m]{x^{a} } )^{b}=(x^{\frac{a}{m}})^{b}=x^{\frac{ab}{m}}\\\\x^{\frac{ab}{m}}=\sqrt[m]{x^{ab} }](https://tex.z-dn.net/?f=%28%5Csqrt%5Bm%5D%7Bx%5E%7Ba%7D%20%7D%20%29%5E%7Bb%7D%3D%28x%5E%7B%5Cfrac%7Ba%7D%7Bm%7D%7D%29%5E%7Bb%7D%3Dx%5E%7B%5Cfrac%7Bab%7D%7Bm%7D%7D%5C%5C%5C%5Cx%5E%7B%5Cfrac%7Bab%7D%7Bm%7D%7D%3D%5Csqrt%5Bm%5D%7Bx%5E%7Bab%7D%20%7D)
Hence,
![(\sqrt[m]{x^{a} } )^{b}=\sqrt[m]{x^{ab} }](https://tex.z-dn.net/?f=%28%5Csqrt%5Bm%5D%7Bx%5E%7Ba%7D%20%7D%20%29%5E%7Bb%7D%3D%5Csqrt%5Bm%5D%7Bx%5E%7Bab%7D%20%7D)
<h2>
Third option,</h2>
![a\sqrt[n]{x}+b\sqrt[n]{x}=ab\sqrt[n]{x}](https://tex.z-dn.net/?f=a%5Csqrt%5Bn%5D%7Bx%7D%2Bb%5Csqrt%5Bn%5D%7Bx%7D%3Dab%5Csqrt%5Bn%5D%7Bx%7D)
The statement is false, the correct form of the statement (according to the property of roots) is:
![a\sqrt[n]{x}+b\sqrt[n]{x}=(a+b)\sqrt[n]{x}](https://tex.z-dn.net/?f=a%5Csqrt%5Bn%5D%7Bx%7D%2Bb%5Csqrt%5Bn%5D%7Bx%7D%3D%28a%2Bb%29%5Csqrt%5Bn%5D%7Bx%7D)
<h2>
Fourth option,</h2>
![\frac{\sqrt[m]{x} }{\sqrt[m]{y}}=m\sqrt{xy}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Csqrt%5Bm%5D%7Bx%7D%20%7D%7B%5Csqrt%5Bm%5D%7By%7D%7D%3Dm%5Csqrt%7Bxy%7D)
The statement is false, the correct form of the statement (according to the property of roots) is:
![\frac{\sqrt[m]{x} }{\sqrt[m]{y}}=\sqrt[m]{\frac{x}{y} }](https://tex.z-dn.net/?f=%5Cfrac%7B%5Csqrt%5Bm%5D%7Bx%7D%20%7D%7B%5Csqrt%5Bm%5D%7By%7D%7D%3D%5Csqrt%5Bm%5D%7B%5Cfrac%7Bx%7D%7By%7D%20%7D)
Hence, the answer is, the statement that is true is the second statement:
![(\sqrt[m]{x^{a} } )^{b}=\sqrt[m]{x^{ab} }](https://tex.z-dn.net/?f=%28%5Csqrt%5Bm%5D%7Bx%5E%7Ba%7D%20%7D%20%29%5E%7Bb%7D%3D%5Csqrt%5Bm%5D%7Bx%5E%7Bab%7D%20%7D)
Have a nice day!
<h3> zor bir soru cevap Ceyhan</h3>