Answer:
L = I α t
Explanation:
given,
rotational inertia = I
initial velocity = ω₀
magnitude of acceleration = α
angular momentum = L
time = t
angular acceleration



ω = α t..............(1)
angular momentum
L = I ω
putting value from equation (1)
L = I α t
Answer:
8.1km/h Northwest
Explanation:
The 8.1km/h Northwest gives the best description of her distance from start to finish. This distance can be represented in a right angle triangle , this is the hypotenuse which is the longest side of the triangle. If we add 5.7 and 5.8 this gives 11.5km/h compared to 8.1km/h which is a smaller distance and the best.
.
<h3>Explanation</h3>
The Stefan-Boltzmann Law gives the energy radiation <em>per unit area</em> of a black body:

where,
the total power emitted,
the surface area of the body,
the Stefan-Boltzmann Constant, and
the temperature of the body in degrees Kelvins.
.
.
.
Keep as many significant figures in
as possible. The error will be large when
is raised to the power of four. Also, the real value will be much smaller than
since the emittance of a human body is much smaller than assumed.
Answer:
65
Explanation:
The resonant frequencies for a fixed string is given by the formula nv/(2L).
Where n is the multiple
.
v is speed in m/s
.
The difference between any two resonant frequencies is given by v/(2L)= fn+1 – fn
fundamental frequency means n=1
i.e fn+1 – fn = 390 -325
= 65
Answer:
16.9000000000000001 J
Explanation:
From the given information:
Let the initial kinetic energy from point A be
= 1.9000000000000001 J
and the final kinetic energy from point B be
= ???
The charge particle Q = 6 mC = 6 × 10⁻³ C
The change in the electric potential from point B to A;
i.e. V_B - V_A = -2.5 × 10³ V
According to the work-energy theorem:
-Q × ΔV = ΔK




