Answer:
The value of g = 0.6168 m/s².
Explanation:
Given that,
On a planet X,
Length of the pendulum(L) = 0.25 meters,
Time period of the pendulum(T) = 4 seconds.
We have to find the 'g' value on the planet.
The 'g' value on a planet can be found by a pendulum with help of the formula,
T = 2π ×
From this, g = 4π² × 
Using the above formula and substituting the values,we get,
g = 0.6168 m/s².
Answer:2000 cm³
Here, pressure remains constant.
So, b the gas law
V/V' = T/ T'
1000 / V' = 300 / 600
V' = 2000 cm³
Explanation:also pls mark brainliest
I think Is b the first question
Explanation:
Given parameters:
Frequency = 12Hz
Unknown:
a. Period of its rotation
b. Time required to complete 86 rotations
Solution:
Frequency is the number of times of rotation per unit of time.
Frequency =
Period is the opposite of frequency;
Period =
= 0.083s
b. Time for 86 rotations;
Since frequency =
n is the number of rotation
t is the time
t =
=
= 7.2s
Answer:
Explanation:
Carton cycle consists of four thermodynamic processes . The first is isothermal expansion at higher temperature , then adiabatic expansion which lowers the temperature of gas . The third process is isothermal compression at lower temperature and the last process is adiabatic compression which increases the temperature of the gas to its original temperature .
So the given process of isothermal compression must have been done at the temperature of 300K , keeping the temperature constant .
Work done on gas at isothermal compression is equal to heat transfer .
work done on gas = 80 x 10³ J
work done on gas = n RT ln v₁ / v₂
n is number of moles v₁ and v₂ are initial and final volume
molecular weight of gas = 28.97 g
1.5 kg = 1500 / 28.97 moles
= 51.77 moles
work done on gas = n RT ln v₁ / v₂
Putting the values in the equation above
80 x 10³ = 51.78 x 8.31 x 300 x ln v₁ / .2
ln v₁ / .2 = .62
v₁ / .2 = 1.8589
v₁ = 0.37 m³