We know that
Part a) <span>Find the fifth term of the arithmetic sequence in which t1 = 3 and tn = tn-1 + 4
t1=3
t2=t1+4----> 3+4-----> 7
t3=t2+4-----> 7+4----> 11
t4=t3+4-----> 11+4---> 15
t5=t4+4-----> 15+4---> 19
the answer Part a) is 19
Part b) </span><span>Find the tenth term of the arithmetic sequence in which t1 = 2 and t4 = -10
we know that
tn=t1+(n-1)*d-----> d=[tn-t1]/(n-1)
t1=2
t4=-10
n=4
find the value of d
d=[-10-2]/(4-1)-----> d=-12/3----> d=-4
find the </span>tenth term (t10)
t10=t1+(10-1)*(-4)----> t10=2+9*(-4)----> t10=-34
the answer Part b) is -34
Part c) <span>Find the fifth term of the geometric sequence in which t1 = 3 and tn = 2tn-1
t1=3
t2=2*t1----> 2*3----> 6
t3=2*t2----> 2*6----> 12
t4=2*t3-----> 2*12---> 24
t2=2*t4----> 2*24----> 48
the answer Part c) is 48</span>
Answer:
c
Step-by-step explanation:
15 Δ 25
20
15 + 20 = 35 (I did this because the two <u><em>smallest</em></u> numbers added together need to be grater than the side with the biggest number.)
35 <u>></u> 25
<em>(I hope this helps you now.)</em>
The correct answer to this is “True”.
Symmetry signifies balance and form. An object with
rotational symmetry will still look the same after a rotation. Since it maintains
its shape and figure after being rotated, therefore its characteristics such as
length of the diagonals, the angles of each corner, or parallelism of opposite
sides will remain the same.