The fourth vertex would be at (2,5).
It has to be the same x value as (2,3) and the same y value as (-6,5)
40 cm = 400 mm, so 400 mm / 18 mm = 200:9, or 22.22:1.
9514 1404 393
Answer:
y -2 = -2/3(x +4)
Step-by-step explanation:
There are several different forms of the equation for a line. Each is useful in its own way. Here, the line crosses the y-axis at a point between integer values, so using that intercept point could be problematical. That suggests the "point-slope" form of the equation for a line would be a better choice.
That form is ...
y -k = m(x -h) . . . . . . . line with slope m through point (h, k)
__
The two marked points are (-4, 2) and (5, -4). All we need is the slope.
The slope is given by the formula ...
m = (y2 -y1)/(x2 -x1) . . . . . . . . where the given points are (x1, y1) and (x2, y2)
m = (-4 -2)/(5 -(-4)) = -6/9 = -2/3
Using the first point, the equation for the line can now be written as ...
y -2 = -2/3(x -(-4))
y -2 = -2/3(x +4)
Answer:
Step-by-step explanation:
Assuming the number of tickets sales from Mondays is normally distributed. the formula for normal distribution would be applied. It is expressed as
z = (x - u)/s
Where
x = ticket sales from monday
u = mean amount of ticket
s = standard deviation
From the information given,
u = 500 tickets
s = 50 tickets
We want to find the probability that the mean will be greater than 510. It is expressed as
P(x greater than 510) = 1 - P(x lesser than or equal to 510)
For x = 510
z = (510 - 500)/50 = 0.2
Looking at the normal distribution table, the probability corresponding to the z score is 0.9773
P(x greater than 510) = 1 - 0.9773 = 0.0227
Answer:
Step-by-step explanation:
After selecting A there are 6 letters that are not K out of the remaining 7 letters so
P(!K)=6/7