Answer:
Socio 1 recibirá Q. 10,690, Socio 2 recibirá Q. 5,345, Socio 3 recibirá Q. 13,655, Socio 4 recibirá Q. 11,285 y Socio 5 recibirá Q. 14,255.
Step-by-step explanation:
Dado que en una sociedad participan 5 socios, colocando todos capitales iguales, lo único que el primer socio estuvo 1 año y medio, el segundo 9 meses, el tercero 5 meses mas que el primero, el cuarto 1 año 7 meses y el quinto 2 años, para determinar cuánto le toca a cada socio de una utilidad de Q. 55,230.00 se deben realizar los siguientes cálculos:
Socio 1 = 1.5 años
Socio 2 = 0.75 años
Socio 3 = 1.916 años
Socio 4 = 1.583 años
Socio 5 = 2 años
Total = 1.5 + 0.75 + 1.916 + 1.583 + 2 = 7.75
Socio 1 =
7.75 = 100
1.50 = X
1.50 x 100 / 7.75 = X
19.35 = X
55,230 x 0.1935 = 10,690
Socio 2 =
7.75 = 100
0.75 = X
0.75 x 100 / 7.75 = X
9.68 = X
55,230 x 0.0968 = 5,345
Socio 3 =
7.75 = 100
1.916 = X
1.916 x 100 / 7.75 = X
24.72 = X
55,230 x 0.2472 = 13,655
Socio 4 =
7.75 = 100
1.583 = X
1.583 x 100 / 7.75 = X
20.43 = X
55,230 x 0.2043 = 11,285
Socio 5 =
7.75 = 100
2 = X
2 x 100 / 7.75 = X
25.81 = X
55,230 x 0.2581 = 14,255
Por lo tanto, Socio 1 recibirá Q. 10,690, Socio 2 recibirá Q. 5,345, Socio 3 recibirá Q. 13,655, Socio 4 recibirá Q. 11,285 y Socio 5 recibirá Q. 14,255.
Answer:
approx. 6 friends brainiest rate 5 stars and thank mee : )
Step-by-step explanation:
The value of x in the algebraic equation is: -5/2.
<h3>How do you Find the Value of a Variable in an Algebraic Equation?</h3>
Given an algebraic equation, to find the unknown value of x, solve by isolating x in the equation.
Given:
4x + 26 = 16
Subtract 26 from both sides
4x = 16 - 26
4x = -10
Divide both sides by 4
x = -10/4
x = -5/2
Therefore, the value of x in the algebraic equation is: -5/2.
Learn more about algebraic equation on:
brainly.com/question/2164351
Answer:
Step-by-step explanation:
4). a). If the diagonals of a parallelogram are congruent, then it must be a RECTANGLE.
b). If the diagonals of a parallelogram are perpendicular, then it must be a SQUARE.
c). If the diagonals of a parallelogram bisect the angles of the parallelogram, then it must be a RHOMBUS.
d). If the diagonals of a parallelogram are perpendicular and congruent, then it must be a SQUARE.
e). If a parallelogram has four congruent sides, then it must be a SQUARE.
5). Given quadrilateral SELF is a rhombus.
a). All sides of a rhombus are equal,
Therefore, ES = EL = 25
b). Diagonals of a rhombus bisects the opposite angles,
Therefore, m∠ELS = m∠FLS
3x - 2 = 2x + 7
3x - 2x = 7 + 2
x = 9
c). Diagonals of the rhombus bisect the opposite angles, and adjacent angles are supplementary.
m∠ELF = 2(m∠ELS) = 2(2y - 9)
m∠LES = 2(m∠LEF) = 2(3y + 9)
And 2(2y - 9) + 2(3y + 9) = 180
(2y - 9) + (3y + 9) = 90
5y = 90
y = 18