Answer:
v= 4.9 m/s in east direction ( or v=4.9 m/s * i )
Explanation:
Since the passenger moves along the train ( in the north direction relative to the train) then if the train is traveling east relative to the ground , the passenger will also travel to the east relative to the ground .
Then the magnitude of the velocity will be
v= 1.40 m/S + 3.5 m/s = 4.9 m/s
v= 4.9 m/s
and the direction will be east ( if the x axis represents east direction and y-axis the north direction , then the velocity vector will be v=4.9 m/s * i )
Answer:
1.55 m
Explanation:
The potential produced by a point charge, is inversely proportional to the distance from the charge to the point where the potential is being calculated, as follows:

As it only depends from the distance r, we can conclude that if the potential is the same for any point to a distance r from the point charge, the equipotencial surface must be a sphere of radius r.
Replacing q = +1.7*10⁻⁸ C, and k = 9*10⁹ N*m²/C², and V, by 120 V and 54 V, we can find the distance from the charge, to the points where we are calculating the potential V, as follows:


The distance between both points, is just the difference between the radius of both spheres, as follows:
r₂ - r₁ = 1.55 m
Finding acceleration= final velocity-initial velocity/ time taken (or A= V-U/T)
Final speed= 2m
Initial speed= 0m
Time taken= 2 seconds
2-0/2 so it’ll be 1m/s
2-0=0
2/2=
Let's use the equations for rectilinear motion. One particular equation is:
d = v₀t +(1/2)at²
Since it has been mentioned that the object starts from rest, then v₀ = 0. Substituting the values,
40 m = (0)(4 s) + (1/2)(a)(4 s)²
Solving for a,
a = 5 m/s²
<em>Therefore, the acceleration due to gravity is 5 m/s².</em>