Answer:
P_2 =0.51 atm
Explanation:
Given that:
Volume (V1) = 2.50 L
Temperature (T1) = 298 K
Volume (V2) = 4.50 L
at standard temperature and pressure;
Pressure (P1) = 1 atm
Temperature (T2) = 273 K
Pressure P2 = ??
Using combined gas law:




<u>Answer:</u>
<u>For A:</u> The equation is 
<u>For B:</u> The equation is 
<u>For C:</u> The equation is 
<u>Explanation:</u>
Alpha decay process is the process in which nucleus of an atom disintegrates into two particles. The first one which is the alpha particle consists of two protons and two neutrons. This is also known as helium nucleus. The second particle is the daughter nuclei which is the original nucleus minus the alpha particle released.

Beta decay process is defined as the process the neutrons get converted into an electron and a proton. The released electron is known as the beta particle. In this process, the atomic number of the daughter nuclei gets increased by a factor of 1 but the mass number remains the same.

<u>For A:</u> Uranium-238 emits an alpha particle
The nuclear equation for this process follows:

<u>For B:</u> Plutonium-239 emits an alpha particle
The nuclear equation for this process follows:

<u>For C:</u> Thorium-239 emits a beta particle
The nuclear equation for this process follows:

The pH of the monoprotic weak acid is 2.79.
<h3>What are weak acids?</h3>
The weak acids are the acids that do not fully dissociate into ions in the solution. Strong acids fully dissociate into ions.
The chemical reaction is HA(aq) ⇄ A⁻(aq) + H⁺(aq).
c (monoprotic acid) = 0.33 M.
Ka = 1.2·10⁻⁶
[A⁻] = [H⁺] = x
[HA] = 0.33 M - x
Ka = [A⁻]·[H⁺] / [HA]
2. 6 × 10⁻⁶ = x² / (0.33 M - x)
Solve quadratic equation: [H⁺] = 0.000524 M.
pH = -log[H⁺]
pH = -log(0.000524 M)
pH = 2.79
Thus, the pH of the monoprotic weak acid is 2.79
To learn more about weak acids, refer to the below link:
brainly.com/question/13032224
#SPJ4
It’s the measure of spaces between objects. It affects groundwater infiltration by having more water fill the spaces between it. For example, is you have bigger rocks the spaces between it are bigger therefore the groundwater infiltration rate is faster. If the rocks are smaller, they are tightly packed and it’s not easy for groundwater infiltration.