Answer:
2-ethoxy-2-methylpropan-1-ol
Explanation:
On this reaction, we have an "<u>epoxide"</u> (2-methyl-1,2-epoxypropane). Additionally, we have <u>acid medium</u> (due to the sulfuric acid
). The acid medium will produce the <u>hydronium ion</u> (
). This ion would be attacked by the oxygen of the epoxide. Then a <u>carbocation</u> would be produced, in this case, the most stable carbocation is the <u>tertiary one</u>. Then an <u>ethanol</u> molecule acts as a nucleophile and will attack the carbocation. Finally, a <u>deprotonation </u>step takes place to produce <u>2-ethoxy-2-methylpropan-1-ol</u>.
See figure 1
I hope it helps!
The question asks average kinetic energy. So it is only related with the temperature. The higher temperature is, the higher kinetic energy is. So the answer is (4).
Answer:
47.2 g
Explanation:
Let's consider the following double displacement reaction.
3 FeCl₂ + 2 Na₃PO₄ → Fe₃(PO₄)₂ + 6 NaCl
The molar mass of Fe₃(PO₄)₂ is 357.48 g/mol. The moles corresponding to 44.3 g are:
44.3 g × (1 mol / 357.48 g) = 0.124 mol
The molar ratio of Fe₃(PO₄)₂ to FeCl₂ is 1:3. The moles of FeCl₂ are:
3 × 0.124 mol = 0.372 mol
The molar mass of FeCl₂ is 126.75 g/mol. The mass of FeCl₂ is:
0.372 mol × (126.75 g/mol) = 47.2 g
Answer:
the answer is nitrogen and rubidium (C)
Explanation:
ionic bonds only form between metals and non-metals
Answer:
D. a nonpolar covalent bond