Answer:
The voltage is V = 37.5 [V]
Explanation:
To solve this problem we must use ohm's law which tells us that the voltage is equal to the product of the current by the resistance.
V = I*R
where:
V = voltage [Volt]
I = current = 0.25[amp]
R = resistance = 150 [ohm]
V = 0.25*150 = 37.5 [V]
It states that the total entropy of an isolated system can never decrease over time
The mass of the second car is 1434.21 kg
<u>Explanation:</u>
Using law of conservation of momentum,

Given:
= 1090 kg
= 11 m/s
= 0
v = 4.75 m/s
We need to find 
When substituting the given values in the above equation, we get





Answer:
1st – Place the film canister on the <u>scale</u>.
2nd – Slide the large <u>weight </u>to the right until the arm drops below the line and then move it back one notch.
3rd – Repeat this process with the <u>top</u> weight. When the arm moves below the line, back it up one groove.
4th – Slide the <u>small </u>weight on the front beam until the <u>lines</u> match up.
5th – Add the amounts on each beam to find the total <u>mass </u>to the nearest tenth of a gram.
Explanation:
The triple beam balance is an instrument that is used in measuring the mass of substances to a very high degree of precision. The reading error is given by ±0.05 grams. The triple beam balance as the name implies has three beams that measure substances of different mass levels.
The beams are categorized as small, medium, and large. There is a balance on which the substance to be weighed is placed directly upon. To use this measuring device, the procedures mentioned above are followed.
Answer: The variable that you manipulate is called the independent variable. The variable that you measure is called the dependent variable.