Answer:
41.8m/s^2
Explanation:
Since the dragster starts from rest, initial velocity (u) = 0m/s, final velocity (v) = 25.9m/s, time (t) = 0.62s
From the equations of motion, v = u + at
a = (v - u)/t = (25.9 - 0)/0.62 = 25.9/0.62 = 41.8m/s^2
Answer:
5.0 m/s
Explanation:
The horizontal motion of the salmon is uniform, so the horizontal component of the salmon's velocity is constant and it is

where u is the initial speed and
. The horizontal distance travelled by the salmon is

where d = 1.95 m and t is the time needed to reach the final point.
Re-arranging for t,
(1)
Along the vertical direction, the equation of motion is

where:
y = 0.311 m is the final height reached by the salmon
h = 0 is the initial height
is the vertical component of the initial velocity of the salmon
is the acceleration of gravity
t is the time
Substituting t as found in eq.(1), we get the equation

and we can solve this formula for u, the initial speed of the salmon:

Answer:
Continental drift theory describes the long term effect of plate tectonics.
Explanation:
The long term result of plate tectonic movement is the continental drift. The continents of Earth lay on tectonic plates, that are in motion and interaction via plate tectonics. The drift of the Earths continent is an ongoing process evident in the rift valleys and seafloor spreading zones.
The theory that the Earth's continents are dynamic and have drifted relative to each other is known as continental drift which correlates with the theory of plate tectonics.
Every year, the Earth's outer shell plates are displaced by a small amount due to the heat coming from the Earths interior via convection currents.
Answer
given,
mass of the ball = 3 kg
swing in vertical circle with radius = 2 m
work done by the gravity = ?
work done by the tension = ?
Work done by the gravity = - m g Δh
Δ h = 2 + 2 = 4 m
Work done by the gravity =
= -117.6 J
work done by gravity is equal to -117.6 J
Work done by tension will be equal to zero.
Zero because tension is always perpendicular to velocity
work done by tension is equal to 0 J
I believe it is -1.11 m/s^2. I will let you know if its correct