The app will only let me give one photo at a time, so here's part 1.
Answer:
∠x = 90°
∠y = 58°
∠z = 32°
Step-by-step explanation:
he dimensions of the angles given are;
∠B = 32°
Whereby ΔABC is a right-angled triangle, and the square fits at angle A, we have;
∠A = 90°
∠B + ∠C = 90° which gives
32° + ∠C = 90°
∠C = 58°
∠x + Interior angle of the square = 180° (Sum of angles on a straight line)
∠x + 90° = 180°
∠x = 90°
∠x + ∠y + 32° = 180° (Sum of angles in a triangle)
90° + ∠y + 32° = 180°
∠y = 180 - 90° - 32° = 58°
∠y + ∠z + Interior angle of the square = 180° (Sum of angles on a straight line)
58° + ∠z +90° = 180°
∴ ∠z = 32°
∠x = 90°
∠y = 58°
∠z = 32°
4,003,052 is the answer to the problem
Answer:

Step-by-step explanation:
Total number of toll-free area codes = 6
A complete number will be of the form:
800-abc-defg
Where abcdefg can be any 7 numbers from 0 to 9. This holds true for all the 6 area codes.
Finding the possible toll free numbers for one area code and multiplying that by 6 will give use the total number of toll free numbers for all 6 area codes.
Considering: 800-abc-defg
The first number "a" can take any digit from 0 to 9. So there are 10 possibilities for this place. Similarly, the second number can take any digit from 0 to 9, so there are 10 possibilities for this place as well and same goes for all the 7 numbers.
Since, there are 10 possibilities for each of the 7 places, according to the fundamental principle of counting, the total possible toll free numbers for one area code would be:
Possible toll free numbers for 1 area code = 10 x 10 x 10 x 10 x 10 x 10 x 10 = 
Since, there are 6 toll-free are codes in total, the total number of toll-free numbers for all 6 area codes = 
Answer:
54 and 30
Step-by-step explanation:
84÷2=42-12=30
42+12=54