The structure and shape of each type of human cell depends on what function it will perform in the body. For example, red blood cells (RBCs) are very small, flat discs, which allows them to easily fit through narrow capillaries and around sharp corners in the circulatory system to deliver oxygen throughout the body.
The elongated shape of muscle cells allows the contraction proteins to line up in an overlapping pattern that makes muscle flexing possible.
And human sperm cells’ structures allow them to “swim” long distances to reach an egg for fertilization
Answer:
This is an example of "Disruptive selection".
Explanation:
<em>Disruptive selection</em> occurs when <em>selective pressure</em> <em>favor homozygous</em>. In equilibrium, <em>the two alleles might be present or one of them might be lost</em>. If an environment has two extremes, then in these environments, both alleles are presented in homozygous.
The disruptive selection causes an <em>increase</em> in the two types of <em>extreme phenotypes over the intermediate forms</em>. Limits between one extreme and the other are frequently very sharped. Individuals belonging to one phenotype can not live in the same area as individuals belonging to the other phenotype, due to the traits differences between them, competition, or predation.
Populations show two favored extreme phenotypes and a few individuals in the middle. Individuals who survive best are the ones who have traits on the <u>extremes forms</u>. Individuals in <u>the middle</u> are not successful at survival or reproduction.
<em>Color</em> is very important when it comes to <em>camouflage</em>. Dark green caterpillars that live in dark foliage and light green caterpillars that live in light foliage can <em>hide from predators</em> more effectively and will live the longest. Intermediate colored green caterpillars that don't camouflage or blend into either will be eaten more quickly.
The answer is B: Water breaks down into oxygen molecules for respiration.
Answer:
I believe this is C) ecosystem impact
Explanation:
The interactions between human population dynamics and the environment have often been viewed mechanistically. This review elucidates the complexities and contextual specificities of population-environment relationships in a number of domains. It explores the ways in which demographers and other social scientists have sought to understand the relationships among a full range of population dynamics (e.g., population size, growth, density, age and sex composition, migration, urbanization, vital rates) and environmental changes. The chapter briefly reviews a number of the theories for understanding population and the environment and then proceeds to provide a state-of-the-art review of studies that have examined population dynamics and their relationship to five environmental issue areas. The review concludes by relating population-environment research to emerging work on human-environment systems.
Answer:
This means that the means height (which is all the sum of the height of all the students divided by their number ) is 205 cm. Standard deviation means how the height of the students deviates from this mean since students do vary in height and are not all the same height of 205 cm. Therefore, in this case, the amount of standard dispersion of the students' height is by 17 cm on either lower or higher side of the mean.