The surface area of rectangular prism is 360 square inches
<em><u>Solution:</u></em>
Given that rectangular prism of the length is 18 cm the width 6 cm and the height 3 cm
To find: Surface area of rectangular prism
<em><u>The Surface area of rectangular prism is given by formula:</u></em>

Where,
"l" is the length and "h" is the height and "w" is the width of prism
From given,
l = 18 cm
w = 6 cm
h = 3 cm
<em><u>Substituting the values in formula,</u></em>

Thus surface area of rectangular prism is 360 square inches
Answer:
x=-1/2
Step-by-step explanation:
Given:
8x^3+12x^2+6x+1=0
Making factors of the given polynomial by using cube formula, given as
(a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3
Re-writting the given polynomial:
(2^3.x^3) + 3(2^2.x^2)(1)+3(2x)(1) + (1^3)=0
Hence (2^3.x^3) + 3(2^2.x^2)(1)+3(2x)(1) + (1^3) can be written as (2x+1)^3
(2x+1)^3= 0
2x+1= 0
2x= -1
x= -1/2 !
1) Considerando o ponto A, um vertice; o ponto O onde o observador está e por ultimo, o ponto N que é onde o navio está.
Com estes 3 pontos formamos um triangulo.
O angulo OAN vale 40º
O lado AN vale 10 milhas
O que queremos saber é a <span>distância entre o observador e o navio: lado NO
</span>
2) Para isso calculamos a tangente deste angulo: tg 40º= angulo oposto/ angulo adjacente.
angulo oposto é o NO e o lado adjacente ao angulo é o AN que vale 10
Se fores à calculadora vês que tg40º é <span>0,83.
0,83= angulo oposto/ 10
ang oposto= 8,3 milhas
</span>o observador e o navio estao a 8,3 milhas de distancia
This question is incomplete. The complete question, answer & explanation for this question is given in the attachment below.
The surface area of a regular tetrahedron is computed as the product of √3 and the square of the length of one side. The length given is 5 meters, by evaluating, we will have A = √3 (a²) = √3 (25) = 43.30. The answer is B.