Molar mass is the mass of each element multiplied by subscript, then added together.
So, we’ll do
C = 12g x 12 = 144 g
H = 1g x 22 = 22 g
O = 16g x 11 = 176 g
The total of all of these is the molar mass: 342 g in a mol
The amount of mols of each element in each compound is likely equal to its subscripts.
C = 12 mols
H = 22 mols
O = 11 mols
For the atoms, you’ll multiply each one of the above by Avogadro’s number
Avogadro’s Number: 6.02 x 10^23 atoms/mol
Heterozygous means A capital P with a lowercase p. There are two purple flowers in the Punnett square with Pp out of 4 possible options. 2/4 is 1/2 which is 50%. So there is a 50% chance of a purple heterozygous flower.
Answer:
2,7 m
Explanation:
You can solve this doing an energy balance:
![m*g*h-\frac{1}{2} *m*v^{2} =41,7[J]](https://tex.z-dn.net/?f=m%2Ag%2Ah-%5Cfrac%7B1%7D%7B2%7D%20%2Am%2Av%5E%7B2%7D%20%3D41%2C7%5BJ%5D)
Solving this equation to get h:

Replacing the values and solving brings to 2,7 m
Answer is: ammonia experience only dispersion intermolecular forces with BF₃ (boron trifluoride) because BF₃ is only nonpolar molecule (vectors of dipole moments cansel each other, dipole moment is zero).
The London dispersion force (intermolecular force) <span>is a temporary attractive </span>force between molecules.