The reaction;
O(g) +O2(g)→O3(g), ΔH = sum of bond enthalpy of reactants-sum of food enthalpy of products.
ΔH = ( bond enthalpy of O(g)+bond enthalpy of O2 (g) - bond enthalpy of O3(g)
-107.2 kJ/mol = O+487.7kJ/mol =O+487.7 kJ/mol +487.7kJ/mol =594.9 kJ/mol
Bond enthalpy (BE) of O3(g) is equals to 2× bond enthalpy of O3(g) because, O3(g) has two types of bonds from its lewis structure (0-0=0).
∴2BE of O3(g) = 594.9kJ/mol
Average bond enthalpy = 594.9kJ/mol/2
=297.45kJ/mol
∴ Averange bond enthalpy of O3(g) is 297.45kJ/mol.
Answer:
P = 13.5 atm
Explanation:
Given that
No. of moles, n = 20 moles
Volume of nitrogen gas = 36.2 L
Temperature = 25°C = 298 K
We need to find the pressure of the gas. Using the ideal gas equation
PV = nRT
Where
R is gas constant, 
So,

so, the pressure of the gas is equal to 13.5 atm.
Hydroxyl ions are OH⁻ while hydronium ions are H₃O⁺ which is essentially H⁺ ions. The formula for pH is: pH = -log[H⁺]. So, the greater the concentration of H⁺ is, the lower the pH which indicates acidity. On the other hand, the greater the concentration of OH⁻, the greater the pH which indicates basicity. This is also a consequence of the equation: pH + pOH = 14.
Answer:
If 51.8 of Pb is reacting, it will require 4.00 g of O2
If 51.8 g of PbO is formed, it will require 3.47 g of O2.
Explanation:
Equation of the reaction:
2 Pb + O2 → 2 PbO
From the equation of reaction, 2 moles of lead metal, Pb, reacts with 1 mole of oxygen gas, O2, to produce 2 moles of lead (ii) oxide, PbO
Molar mass of Pb = 207 g
Molar mass of O2 = 32 g
Molar mass of PbO = 207 + 32 = 239 g
Therefore 2 × 207 g of Pb reacts with 32 g of O2 to produce 2 × 239 g of PbO
= 414 g of Pb reacts with 32 g of O2 to produce 478 g of PbO
Therefore, formation of 51.8 g of PbO will require (32/478) × 51.8 of O2 = 3.47 g of O2.
If 51.8 of Pb is reacting, it will require (32/414) × 51.8 g of O2 = 4.00 g of O2
First we have to find Ka1 and Ka2
pKa1 = - log Ka1 so Ka1 = 0.059
pKa2 = - log Ka2 so Ka2 = 6.46 x 10⁻⁵
Looking at the values of equilibrium constants we can see that the first one is really big compared to second one. so, the pH will be affected mainly by the first ionization of the acid.
Oxalic acid is H₂C₂O₄
H₂C₂O₄ ⇄ H⁺ + HC₂O₄⁻
0.0356 M 0 0
0.0356 - x x x
Ka1 =
![\frac{[H^+][HC2O4^-]}{[H2C2O4]}](https://tex.z-dn.net/?f=%20%5Cfrac%7B%5BH%5E%2B%5D%5BHC2O4%5E-%5D%7D%7B%5BH2C2O4%5D%7D%20)
= x² / 0.0356 - x
x = 0.025 M
pH = - log [H⁺] = - log (0.025) = 1.6