For example, ionic compounds, which are very polar, are often soluble in the polar solvent water. Nonpolar substances are likely to dissolve in nonpolar solvents. For example, nonpolar molecular substances are likely to dissolve in hexane, a common nonpolar solvent.
Answer:
-65.897°C.
Explanation:
- Adding solute to water causes depression of the boiling point.
- The depression in freezing point (ΔTf) can be calculated using the relation: <em>ΔTf = Kf.m,</em>
where, ΔTf is the depression in freezing point of chloroform solution.
Kf is the molal depression constant of chloroform (Kf = 4.70°C.kg/mol).
m is the molality of the solution (m = 0.51 m).
∴ ΔTf = Kf.m = (4.70°C.kg/mol)(0.51 m) = 2.397°C.
∴ The freezing point of the solution = (freezing point of chloroform) - ΔTf = (-63.5°C) - (2.397°C) = -65.897°C.
Hello!
Answer: 14.3%
Explanation: In order to find the mass percent of hydrogen in this compound, you must determine how many grams of hydrogen you'd get in 100 g of compound.
In your case, you know that an unknown mass of hydrogen reacts with 0.771 g of carbon to form 0.90 g of hydrocarbon, which is a compound that contains only carbon and hydrogen.
Use the total mass of the hydrocarbon to determine how many grams of hydrogen reacted with the carbon.
Now, if 0.90 g of this compound contain 0.129 g of hydrogen, it follows that 100 g of this compound will contain.
So, if 100 g of this compound contain 14.33 g of hydrogen, it follows that the mass percent of hydrogen is 14.3%
Hope this Helps! Have A WONDERFUL Day! :)