Whole number is 3
Integer but not whole is 1/2
Rational Number is 49/7
Irrational Number is 89/10
Answer:
Step-by-step explanation:
a+b+c=0, a+b=-c,a+c=-b, b+c=-a
(a+b+c)^3=(a+b+c)^2*(a+b+c)=(a^2+b^2+c^2+2ab+2ac+2bc)*(a+b+c)=
a^3+ab^2+ac^2+2a^2b+2a^2c+2abc+a^2b+b^3+bc^2+2ab^2+2abc+2b^2c+a^2c+b^2c+c^3+2abc+2ac^2+2bc^2=a^3+b^3+c^3+3a^2b+3a^2c+3ac^2+3ab^2+3bc^2+3b^2c+6abc=
a^3+b^3+c^3+3a^2*(b+c)+3c^2(a+b)+3b^2(a+c)+6abc=
a^3+b^3+c^3+3a^2*(-a)+3c^2*(-c)+3b^2*(-b)+6abc=
a^3+b^3+c^3-3a^3-3c^3-3b^3+6abc=
6abc-2a^3-2b^3-2c^3=2(3abc-a^3-b^3-c^3)=
2*[3abc-(a^3+b^3+c^3)]=0
so 3abc-(a^3+b^3+c^3)=0
so a^3+b^3+c^3=3abc
We would subtact 3 from both sides allowing the equation to simplify to -8c=32
We would then divide both sides by -8 to equal -4
The final answer C=-4
Answer:
Step-by-step explanation:
We need to convert the mileage from mi/gal units into to km/L units using the conversion factors.
(31.0 mi/gal) x (1 km / 0.6214 mi) x (1 gal / 3.78 L) = 13.20 km/L
Next, we divide the distance by the mileage.
(142 km) / (13.20 km/L) = 10.79 L
<span>Therefore, you need 10.79 liters of gasoline.</span>