Answer:
i 5.3 cm ii. 72 cm
Explanation:
i
We know upthrust on iron = weight of mercury displaced
To balance, the weight of iron = weight of mercury displaced . So
ρ₁V₁g = ρ₂V₂g
ρ₁V₁ = ρ₂V₂ where ρ₁ = density of iron = 7.2 g/cm³ and V₁ = volume of iron = 10³ cm³ and ρ₂ = density of mercury = 13.6 g/cm³ and V₂ = volume of mercury displaced = ?
V₂ = ρ₁V₁/ρ₂ = 7.2 g/cm³ × 10³ cm³/13.6 g/cm³ = 529.4 cm³
So, the height of iron above the mercury is h = V₂/area of base iron block
= 529.4 cm³/10² cm² = 5.294 cm ≅ 5.3 cm
ρ₁V₁g = ρ₂V₂g
ii
ρ₁V₁ = ρ₃V₃ where ρ₁ = density of iron = 7.2 g/cm³ and V₁ = volume of iron = 10³ cm³ and ρ₃ = density of water = 1 g/cm³ and V₃ = volume of water displaced = ?
V₃ = ρ₁V₁/ρ₃ = 7.2 g/cm³ × 10³ cm³/1 g/cm³ = 7200 cm³
So, the height of column of water is h = V₃/area of base iron block
= 7200 cm³/10² cm² = 72 cm
The weight of the meterstick is:

and this weight is applied at the center of mass of the meterstick, so at x=0.50 m, therefore at a distance

from the pivot.
The torque generated by the weight of the meterstick around the pivot is:

To keep the system in equilibrium, the mass of 0.50 kg must generate an equal torque with opposite direction of rotation, so it must be located at a distance d2 somewhere between x=0 and x=0.40 m. The magnitude of the torque should be the same, 0.20 Nm, and so we have:

from which we find the value of d2:

So, the mass should be put at x=-0.04 m from the pivot, therefore at the x=36 cm mark.
Explanation:
The changes can be made in airplane longitudinal control to maintain altitude while the airspeed is being decreased is
We can increase the angle of attack this would compensate for the decreasing lift. As the angle of attack directly controls the distribution of pressure on the wings. Moreover, increase in angle of attack will also cause the drag to increase.