*heat transfer energy, As it always flow from higher temperature to lower temperature till it reach the thermal equilibrium.
example: -friction.
- collisions.
- the hot cup which's hotter than your hand✋will transfer heat in your hand. and a cold piece of ice which's colder than your hand to causing the heat transfer out of your hand .
*temperature ️ depends on the move of particle and we have a different shape of motion like:
translational motion.
rotational motion.
vibrational motion.
when the temperature:
increases it has more kinetic energy and faster moving particles and the object expanded which known as (thermal expansion).
decreases it has less kinetic energy and slower moving particles.
As kinetic energy is 1/2 mV².
example: -the mercury in thermometers.
*Absolute zero :
The theoretical temperature at which substances possess no thermal energy, equal to 0 K, −273.15°C, or −459.67°F.
*specific heat "c" :
is essentially a measure of how thermally insensitive a substance is to the addition of energy.
c=Q/m∆T
where Q is energy .
note water has a higher specific heat, and lower temperature.
*conduction <em><u>example</u></em> When the stove is turned on, the skillet becomes very hot due to the conduction of heat from the burner to the skillet.
Answer:
A. 171.24 Ibs
Explanation:
To find the amount of salt in the tank,
Let Q = Amount of salt in the mixture
And let 100 + (3-2)t = 100 + t be the volume of mixture at anytime t.
Rate of gain - Rate of loss = dQ / dt
Concentration of salt = Q / (100+t)
For the linear differential equation,
dQ / dt = 3(2) - 2 [Q/ (100 + t)]
dQ /dt + Q [2 / (100 + t)] = 6
The general solution of the linear differential equation is:
Q (i.f) = ∫ A(t) (i.f) dt + C
Therefore,
i.f = e ^ ∫ P(t) dt
And P(t) = 2 / (100 + t)
i.f = e ^ ∫ 2 / (100 + t)
= e ^ 2㏑ (100 + t)
= e ^ ㏑ (100 + t) ^2 = (100 + t) ^2
Q(100 + t) ^ 2 = ∫6 (100 + t) ^2 dt + C
Q(100 + t) ^2 = 2(100 + t) ^ 3 + C
When t = 0, Q = 50
Therefore,
50( 100) ^2 = 2(100) ^3 + C
C = -1.5 * 10 ^6
therefore, when t = 30,
Q (100 + 30) ^2 = 2(100 + 30) ^3 - 1.5 * 10 ^6
Q (400) ^2 = 2(130) ^3 - 1.5 * 10 ^6
Q = 171.24 Ibs
At the given erro in angle, the error in the measurement of sin 90 degrees would be 0.001.
<h3>
Percentage error</h3>
The percentage error of any measurement is obtained from the ratio of the error to the actual measurement.
The error of sin 90 degrees is calculated as follows;
sin 90 = 1
error in measurement = sin(90 - 0.5)
error in measurement = sin(89.5) = 0.999
<h3>Error in sin 90 degrees</h3>
Error in sin 90 degrees = 1 - 0.999
Error in sin 90 degrees = 0.001
Thus, at the given erro in angle, the error in sin 90 degrees would be 0.001.
Learn more about error in measurement here: brainly.com/question/26668346
Answer:
–735.17 N
The negative sign indicate that the force is acting in opposition direction to the car.
Explanation:
The following data were obtained from the question:
Mass (m) of car = 782.10 kg
Initial velocity (u) = 7.60 m/s
Final velocity (v) = 3.61 m/s
Time (t) = 4.23 s
Force (F) =?
Next, we shall determine the acceleration of the car. This can be obtained as follow:
Initial velocity (u) = 7.60 m/s
Final velocity (v) = 3.61 m/s
Time (t) = 4.23 s
Acceleration (a) =?
a = (v – u) / t
a = (3.61 – 7.60) / 4.23
a = –3.99 / 4.23
a = –0.94 m/s²
Finally, we shall determine the force experienced by the car as shown below:
Mass (m) of car = 782.10 kg
Acceleration (a) = –0.94 m/s²
Force (F) =?
F = ma
F = 782.10 × –0.94
F = –735.17 N
The negative sign indicate that the force is acting in opposition direction to the car.
Answer:
F = 0.1575 N
Explanation:
When the third sphere touches the first sphere, the charge is distributed between both spheres, then now the first sphere has only half of his original charge.
In this moment then
Sphere one has a charge = Q/2
Sphere three has a charge = Q/2
Now when the third sphere touches the second sphere again the charge is distributed in a manner that both sphere has the same charge.
How the total charge is Q = Q/2 + Q = 3/2Q, when the spheres are separated each one has 3/4Q
Sphere two has a charge = 3/4Q
Sphere three has a charge = 3/4Q
The electrostatic force that acts on sphere 2 due to sphere 1 is:
F =
F=
how = 0.42
Then
F =
F = 0.1575 N