Answer:
a. 2.668 m/s
b. 0.00494
Explanation:
The computation is shown below:
a. As we know that


As the wind does not move the skater to the east little work is performed in this direction. All the work goes in the direction of the N-S. And located in that direction the component of the Force.
F = 3.70 cos 45 = 2.62 N


We know that
KE1 = Initial kinetic energy
KE2 = kinetic energy following 100 m
The energy following 100 meters equivalent to the initial kinetic energy less the energy lost to the work performed by the wind on the skater.
So, the equation is
KE2 = KE1 - W

Now solve for v2


= 2.668 m/s
b. Now the minimum value of Ug is
As we know that
Ff = force of friction
Us = coefficient of static friction
N = Normal force = weight of skater
So,

Now solve for Us


= 0.00494
The average electric current in the lightning will be 8 ×
A
<h3>
Why Lightning Conductors on top of a tower ?</h3>
The lightning conductors are long metal strips running from the spike end of a conductor on the top of a building to the earth. They are used to prevent buildings from destruction when struck by thunder or lightning.
Given that a lightning strike can transfer as much as electrons from the cloud to the ground. if the strike lasts 2ms, to calculate the average electric current in the lightning, we will first consider the charge released.
one charge = 1.6 ×
C
Average current I = Q/t
Where
- Q = charge = 1.6 ×
C
- t = time = 2ms = 2 ×
s
Substitute all the parameters into the formula
I = 1.6 ×
C ÷ 2 × 
I = 8 ×
A
Therefore, the average electric current in the lightning will be 8 ×
A
Learn more about Lightning here: brainly.com/question/3183045
#SPJ1
I believe the answer would be 4.5. because it wouldnt be c or d. and 2 seems too small.
To answer this question do you need to know the formula to get the rate of change of acceleration (a=Δv/Δt; Δv= final velocity - initial velocity) and the formula to find the force of an object given a constant acceleration (F=m*a). Given these two formulas you can applicate them to solve for the mass of an object.
The light detection device is also called photodetector. It <span>transforms any natural or artificial light source it encounters into sound.
</span>Current flows in a light detection device when light collide with its pn junction.
When light falls on the junction, a reverse current flows which is proportional to the illuminance. The linear response to light makes it an element in useful photodetectors<span> for some applications. It is also used as the active element in light-activated switches.</span>