Answer:
Ro = 133 [kg/m³]
Explanation:
In order to solve this problem, we must apply the definition of density, which is defined as the relationship between mass and volume.

where:
m = mass [kg]
V = volume [m³]
We will convert the units of length to meters and the mass to kilograms.
L = 15 [cm] = 0.15 [m]
t = 2 [mm] = 0.002 [m]
w = 10 [cm] = 0.1 [m]
Now we can find the volume.
![V = 0.15*0.002*0.1\\V = 0.00003 [m^{3} ]](https://tex.z-dn.net/?f=V%20%3D%200.15%2A0.002%2A0.1%5C%5CV%20%3D%200.00003%20%5Bm%5E%7B3%7D%20%5D)
And the mass m = 4 [gramm] = 0.004 [kg]
![Ro = 0.004/0.00003\\Ro = 133 [kg/m^{3}]](https://tex.z-dn.net/?f=Ro%20%3D%200.004%2F0.00003%5C%5CRo%20%3D%20133%20%5Bkg%2Fm%5E%7B3%7D%5D)
The work done by the normal force n when the box slides down a frictionless incline and gaining speed is zero.
<h3>What is normal force?</h3>
The force of contact is called the normal force. When the two surfaces are in contact with each other, then the normal force acts.
This force is applied by the solid bodies on each other in order to prevent the passing through each other.
A box slides down a frictionless incline, gaining speed. For this box, the value of work done by normal force has to be found out. Let's analyze the given condition.
- The body is gaining the speed, which means there is a change in kinetic energy.
- The change in kinetic energy is equal to the work done.
- The friction force is the product of coefficient of the friction and normal force.
- The friction force for the given case is zero. Thus, the normal force must be equal to the zero.
Thus, the work done by the normal force n when the box slides down a frictionless incline and gaining speed is zero.
Learn more about the normal force here;
brainly.com/question/10941832
Σf = m a
Σf = m v^2 / r
Σf = 52 8^2 / 1.6
Σf = 2080 N
Complete Question:
When specially prepared Hydrogen atoms with their electrons in the 6f state are placed into a strong uniform magnetic field, the degenerate energy levels split into several levels. This is the so called normal Zeeman effect.
Ignoring the electron spin what is the largest possible energy difference, if the magnetic field is 2.02 Tesla?
Answer:
ΔE = 1.224 * 10⁻²² J
Explanation:
In the 6f state, the orbital quantum number, L = 3
The magnetic quantum number, 
The change in energy due to Zeeman effect is given by:

Magnetic field B = 2.02 T
Bohr magnetron, 

ΔE = 1.224 * 10⁻²² J
Answer:
m = 35 g
Explanation:
The specific heat of a material can be calculated by the following formula:

where,
C = Specific Heat of Wax = 220 J/g
Q = Amount of Heat Supplied by the Heater = 7700 J
m = mass of wax melted = ?
Therefore,

<u>m = 35 g </u>