An electron in the 3s orbital. The order of electron orbital energy levels starting from lowest to highest is as follows: 1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, 6s, 4f, 5d, 6p, 7s, 5f, 6d, 7p.
Answer:
C. by its chemical Symbol
Hope this helps!
Answer:
(a) Ionic
(b) Nonpolar covalent
(c) Polar covalent
(d) Polar covalent
(e) Nonpolar covalent
(f) Polar covalent
<em>For those substances with polar covalent bonds, which has the least polar bond?</em> NO₂
<em>For those substances with polar covalent bonds, which has the most polar bond?</em> BF₃
Explanation:
<em>Are the bonds in each of the following substances ionic, nonpolar covalent, or polar covalent?</em>
The nature of a bond depends on the modulus of the difference of electronegativity (|ΔEN|) between the atoms that form it.
- If |ΔEN| = 0, the bond is nonpolar covalent.
- If 0 < |ΔEN| ≤ 2, the bond is polar covalent.
- If |ΔEN| > 2, the bond is ionic.
<em>(a) KCl</em> |ΔEN| = |EN(K) - EN(Cl)| = |0.8 - 3.0| = 2.2. The bond is ionic.
<em>(b) P₄</em> |ΔEN| = |EN(P) - EN(P)| = |2.1 - 2.1| = 0.0. The bond is nonpolar covalent.
<em>(c) BF₃</em> |ΔEN| = |EN(B) - EN(F)| = |2.0 - 4.0| = 2.0. The bond is polar covalent.
<em>(d) SO₂</em> |ΔEN| = |EN(S) - EN(O)| = |2.5 - 3.5| = 1.0. The bond is polar covalent.
<em>(e) Br₂</em> |ΔEN| = |EN(Br) - EN(Br)| = |2.8 - 2.8| = 0.0. The bond is nonpolar covalent.
<em>(f) NO₂</em> |ΔEN| = |EN(N) - EN(O)| = |3.0 - 3.5| = 0.5. The bond is polar covalent.
Answer:
The coefficient for PH3 is 8. Option D is correct.
Explanation:
Step 1: The unbalanced equation
P2H4(g) ⇆ PH3(g) + P4(s)
Step 2: Balancing the equation
P2H4(g) ⇆ PH3(g) + P4(s)
On the left side we have 4x H (in P2H4), on the right side we have 3x H (in PH3). To balance the amount of H on both sides, we have to multiply P2H4 on the left side by 3 and PH3 on the right by 4.
3P2H4(g
) ⇆ 4PH3(g) + P4(s)
On the left side we have 6x P (in 3P2H4) on the right side we have 8x P (4x in 4PH3 and 4x in P4). To balance the amount of P on bot hsides, we have to multiply 3P2H4 by 2 and 4PH3 also by 2. Now the equation is balanced
6P2H4(g
) ⇆ 8PH3(g) + P4(s)
The coefficient for PH3 is 8. Option D is correct.