There are types of lens; concave and convex lens.
The concave lens is a lens which has an inward curve in the middle, that is, the edges of the curve are thicker than the center of the lens, because of this, any light that enter the lens will spread out [diverge]. An image will look smaller and upright when viewed by a concave lens. Image formed by concave lens are usually VIRTUAL.
A concave lens will produce a real image ONLY if the object is located beyond the focal point of the lens.
A convex lens is a converging lens, this is because, the center of the lens is thicker than its edges. Any ray of light that passes through the lens will converge at the middle of the lens at point called principal focus. A convex lens produce a VIRTUAL image when the object is placed infront of the focal point. The virtual image formed is always magnified and upright.<span />
I uploaded the answer to a file hosting. Here's link:
tinyurl.com/wtjfavyw
Answer:
I don't see any following statements
Explanation:
could you give me some and I'll be happy to help : )
Explanation :
As we know that the Gibbs free energy is not only function of temperature and pressure but also amount of each substance in the system.

where,
is the amount of component 1 and 2 in the system.
Partial molar Gibbs free energy : The partial derivative of Gibbs free energy with respect to amount of component (i) of a mixture when other variable
are kept constant are known as partial molar Gibbs free energy of
component.
For a substance in a mixture, the chemical potential
is defined as the partial molar Gibbs free energy.
The expression will be:

where,
T = temperature
P = pressure
is the amount of component 'i' and 'j' in the system.
Answer:
3.81 g Pb
Explanation:
When a lead acid car battery is recharged, the following half-reactions take place:
Cathode: PbSO₄(s) + H⁺ (aq) + 2e⁻ → Pb(s) + HSO₄⁻(aq)
Anode: PbSO₄(s) + 2 H₂O(l) → PbO₂(s) + HSO₄⁻(aq) + 3H⁺ (aq) + 2e⁻
We can establish the following relations:
- 1 A = 1 c/s
- 1 mole of Pb(s) is deposited when 2 moles of e⁻ circulate.
- The molar mass of Pb is 207.2 g/mol
- 1 mol of e⁻ has a charge of 96468 c (Faraday's constant)
Suppose a current of 96.0A is fed into a car battery for 37.0 seconds. The mass of lead deposited is:
