The time required to reduce the concentration from 0.00757 M to 0.00180 M is equal to 1.52 × 10⁻⁴ s. The half-life period of the reaction is 9.98× 10⁻⁵s.
<h3>What is the rate of reaction?</h3>
The rate of reaction is described as the speed at which reactants are converted into products. A catalyst increases the rate of the reaction without going under any change in the chemical reaction.
Given the initial concentration of the reactant, C₀= 0.00757 M
The concentration of reactant after time t is C₁= 0.00180 M
The rate constant of the reaction, k = 37.9 M⁻¹s⁻¹
For the first-order reaction: 
0.00180 = 0.00757 - (37.9) t
t = 1.52 × 10⁻⁴ s
The half-life period of the reaction: 

Half-life of the reaction = 9.98 × 10⁻⁵s
Learn more about the rate of reaction, here:
brainly.com/question/13571877
#SPJ1
Answer:
One can determine the specific heat of the metal through using the clarimeter, water, thermometer and using heat equations.
Explanation:
You can learn about heat effects and calorimetery through a simple experiment by boiling water and heating up the metal in it. Then, pour it into your calorimeter and the heat will flow from the metal to the water. The two equlibria will meet: the metal will loose heat into its surroundings (the water) and teh water will absorb the heat. The heat flow for the water is the same as it is for the metal, the only difference being is the negative sign indicating the loss of the heat of the metal.
In terms of theromdynamics, we can deteremine the heat flow for the metal becasue it would be equal to the mangnitued but opposite in direction. Thus, we can say that the specific heat of water qH2O = -qmetal.
Answer:
An electron has more mass than a proton or a neutron.
Explanation:
Mass of electron - 9.109 e-31 kg
hope it helps!!
By breaking the hydrogen bonds that cause surface tension
Answer:
The Best Answer would be B but the correct answer is A+B --> AB
Explanation: