<h2>
Answer:</h2>
<h3>#Carry On Learning</h3>
<h2>
Explanation:</h2>
<h3>I hope It's Help</h3>
A displacement reaction will occur from the system given above. The chlorine molecules will displace the bromide ions in the solution of sodium bromide. The reaction will yield to sodium chloride and bromine. The reaction will be:
2NaBr + Cl2 = 2NaCl + Br2
The theory of blending inheritance was used to describe an actual blending of our alleles, that together would form a new allele. For example, skin color and height would be the result of the blend of the parent's alleles.
This theory doesn't explain why some traits disapear or are discrete.
On the other hand, Mendel's experiments with seed colors explains it. He demonstrated that genes are inherited in pairs and that in hybrid organisms, dominant versions of that gene, could hide the presence of a recessive version of that same gene.
Answer:
BaSO₄
Explanation:
It is possible to know if a bond is ionic or covalent using the electronegativity of the atoms in the bond. If electronegativity difference is higher than 1.8, the bond is ionic, if doesn't, bond is covalent.
CaI₂ has the Ca-I bond where electronegativity of Ca and I are 1 and 2.66. Difference of electronegativity is 1.66 → <em>Bond is covalent.</em>
COS has the C-O and C-S bonds where electronegativity of C, O and S are 2.55, 3.44 and 2.55. Difference of electronegativity are 0.89 and 0 → <em>Bonds are covalent.</em>
BaSO₄ has the Ba-O and O-S bonds where electronegativity of Ba, O and S are 0.89, 3.44 and 2.55. Difference of electronegativity are 2.55 and 0.89 → <em>Bonds are ionic and covalent respectively</em><em>.</em>
SF₆ has the S-F bond where electronegativity of S and F are 2.55 and 3.98. Difference of electronegativity is 1.43 → <em>Bond is covalent.</em>