<h3>
Answer:</h3>
3.38 × 10²⁴ molecules CO₂
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
- Avogadro's Number - 6.022 × 10²³ atoms, molecules, formula units, etc.
<u>Stoichiometry</u>
- Using Dimensional Analysis
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
[Given] 5.61 moles CO₂
[Solve] molecules CO₂
<u>Step 2: Identify Conversions</u>
Avogadro's Number
<u>Step 3: Convert</u>
- [DA] Set up:

- [DA] Multiply/Divide [Cancel out units]:

<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 3 sig figs.</em>
3.37834 × 10²⁴ molecules CO₂ ≈ 3.38 × 10²⁴ molecules CO₂
Answer:
Option E, Half life = 
Explanation:
For a first order reaction, rate constant and half-life is related as:

Where,
= Half life
k = Rate constant
Rate constant given = 


So, the correct option is option E.
Answer:
I don't really know what that is so here is a picture of it
Explanation:
Answer: 15.3 grams C
Explanation: 1 mole is 6.02x10^23 atoms. We can find the moles of C in 7.675 x 10^23 atoms of C by dividing:
(7.675 x 10^23 atoms C)/(6.02x10^23 atoms C/mole) = 1.275 moles C
The molar mass of carbon is 12g/mole. So the mass of 7.675 x 10^23 atoms is (1.275 moles C)*(12 g/mole C) = 15.3 grams.
Helium is a chemical element of the atomic number 2, an inert gas that is the lightest member of the noble gas series.
These means, Helium is lighter than air, and for this is why all other balloons may not float.
The helium balloon displaces an amount of air (Just like an empty water bottle displaces an amount of water). As long as the weight of the helium plus the balloon fabric is lighter than the air displaces, the balloon will float in the air.