Answer:
steel because being alloy in metal it has free electrons in metals
Answer:
Known as automatic tire chains and sometimes referred to by brand names like Onspot or Insta-Chain, these chains essentially hang listlessly from the vehicle's suspension until inclement weather arrives. When that happens, a driver can flip a switch that will lower the chains so they hang in front of the back tires.
Explanation:
(Happy to Help)
Answer:
The friction force and the x component for the weight should be the reaction forces that are opposite and equal to the action force, which causes the locomotive to move up the hill if the velocity of the locomotive remains constant.
Explanation:
<u>When the locomotive starts to pull the train up, appears two reaction forces opposed to the action force in the direction of the move. </u>
The first one is due to the friction between the wheels and the ground, it will be the friction force (Fr):
Fr = μ*Pₓ =μmg*sin(φ)
<em>where μ: friction dynamic coefficient, Pₓ: is the weight component in the x-axis, m: total mass = train's mass + locomotive's mass, g: gravity, and sin(φ): is the angle respect to the x-axis.</em>
And the second one is the x component for the weight (Wₓ):
Wₓ = mg*cos(φ)
<em>where cos(φ): is the angle respect to the y-axis. </em>
<em> </em>
These two forces should be the same as the action force, which causes the locomotive to move up the hill if the velocity of the locomotive remains constant.
Answer:
60 J
Explanation:
KE = ½ mv²
KE = ½ (0.3 kg) (20 m/s)²
KE = 60 J
Work formula:
W = F * d
F 1 = 40 N, d 1 = 6 m;
F 2 = 30 N; d 2 = 6 m.
W ( Cindy ) = 40 * 6 = 240 Nm
W ( Andy ) = 30 * 6 = 180 Nm
The difference of their amounts if work:
240 Nm - 180 Nm = 60 Nm