Answers: 1) 3 kg m²
2) 2.88 kg m²
Explanation: <u> </u><u>Question 1</u>
I = m(r)²+ M(r)²
I = 1.2 kg × (1 m )² +1.8 kg ×(1 m )²
∴ I = 3 kg m²
<u> </u><u>Question 2 </u>
ACCORDING TO THE DIAGRAM DRAWN FOR QUESTION 2
we have to decide where the center of gravity (G) lies and obviously it should lie somewhere near to the greater mass.<em> (which is 1.8 kg). S</em>ince we don't know the distance from center of gravity(G) to the mass (1.8 kg) we'll take it as 'x' and solve!!
<u>moments around 'G' </u>
F₁ d ₁ = F₂ d ₂
12 (2-X) = 18 (X)
24 -12 X =18 X
∴ X = 0.8 m
∴ ( 2 - x ) = 1.2 m
∴ Moment of inertia (I) going through the center of mass of two masses,
⇒ I = m (r)² +M (r)²
⇒ I = 1.2 × (1.2)² + 1.8 × (0.8)²
⇒ I = 1.2 × 1.44 + 1.8 × 0.64
⇒ I = 1.728 + 1.152
⇒ ∴ I = 2.88 kg m²
∴ THE QUESTION IS SOLVED !!!
<span class="sg-text sg-text--link sg-text--bold sg-text--link-disabled sg-text--blue-dark">
docx
</span>
R = 2700 ohm
I = 2.4 mA = 2.4 × 10^(-3) A
I = Q/t
Q = I × t = 2.4 × 10^(-3) × 15 s = 36 C
Electrons are important to the electric current because they are able to move from one atom to another. When an atom loses an electron, it becomes positively charged and when an atom gains an electron, it becomes negatively charged.
Answer:
Energy = 18.3 Kilowatt-hour
Explanation:
Given the following data;
Power = 1220 Watts
Time = 30 * 30 = 900 minutes to hours = 900/60 = 15 hours
To find the energy consumption;
Power can be defined as the energy required to do work per unit time.
Mathematically, it is given by the formula;
Making energy the subject of formula, we have;
Energy = power * time
Energy = 1220 * 15
Energy = 18300 Joules
To convert energy to Kilowatt-hour;
Energy = 18300/1000
Energy = 18.3 Kilowatt-hour