<span>Martin deposits $200
in a savings account that earns 5% annual interest.
year interest balance
1 200 * 5% 200(1.05)
2 200(1.05) * 5% 200(1.05)^2
3 200(1.05)^2*5% 200(1.05)^3
y 200(1.05)^y
=> m = 200 (1.05)^y
four years later,
cary deposits $200 in an account earning the same interest.
</span>
<span><span>year interest balance
5 200 * 5% 200(1.05)
6 200(1.05) * 5% 200(1.05)^2
7 200(1.05)^2*5% 200(1.05)^3
y 200(1.05)^(y-4)
=> c = 200(1.05)^ (y-4)
</span>
Answer:
Martin: 200(1.05)^y
Cary: 200(1.05)^(y–4)</span>
Answer:
Given:
length of the wire = 0.20 meters
magnetic field strength = 0.45 newtons/amperes meter
speed = 10.0 meters per second
emf = B * l * v
B = flux density ; l = length of the wire ; v = velocity of the conductor
emf = 0.45 newtons / ampere meter * 0.20 meters * 10.0 meters/seconds
emf = 0.90 volts
The emf produced is 0.90 volts.
Step-by-step explanation:
I think that would be 100 million pounds of coal.