Answer:
An exothermic process releases heat, causing the temperature of the immediate surroundings to rise. An endothermic process absorbs heat and cools the surroundings.
Answer:
A
Explanation:
It is so because the low air pressure create vacuum and the air from high pressure area move toward the low air pressure.
Answer:
A. The pressure will increase 4 times. P₂ = 4 P₁
B. The pressure will decrease to half its value. P₂ = 0.5 P₁
C. The pressure will decrease to half its value. P₂ = 0.5 P₁
Explanation:
Initially, we have n₁ moles of a gas that occupy a volume V₁ at temperature T₁ and pressure P₁.
<em>What would happen to the gas pressure inside the cylinder if you do the following?</em>
<em />
<em>Part A: Decrease the volume to one-fourth the original volume while holding the temperature constant. Express your answer in terms of the variable P initial.</em>
V₂ = 0.25 V₁. According to Boyle's law,
P₁ . V₁ = P₂ . V₂
P₁ . V₁ = P₂ . 0.25 V₁
P₁ = P₂ . 0.25
P₂ = 4 P₁
<em>Part B: Reduce the Kelvin temperature to half its original value while holding the volume constant. Express your answer in terms of the variable P initial.</em>
T₂ = 0.5 T₁. According to Gay-Lussac's law,

<em>Part C: Reduce the amount of gas to half while keeping the volume and temperature constant. Express your answer in terms of the variable P initial.</em>
n₂ = 0.5 n₁.
P₁ in terms of the ideal gas equation is:

P₂ in terms of the ideal gas equation is:

The volume of a gas that is required yo react with 4.03 g mg at STP is 1856 ml
calculation/
- calculate the moles of Mg used
moles=mass/molar mass
moles of Mg is therefore=4.03 g/ 24.3 g/mol=0.1658 moles
- by use of mole ratio of Mg:O2 from the equation which is 2:1
the moles 02=0.1679 x1/20.0829 moles
- at STP 1 mole of a gas= 22.4 l
0.0895 moles=? L
- =0.0895 moles x22.4 l/ 1 mole=1.8570 L
into Ml = 1.8570 x1000=1856 ml approximately to 1860